Matching Items (3)
Filtering by

Clear all filters

152166-Thumbnail Image.png
Description
The advent of threshold logic simplifies the traditional Boolean logic to the single level multi-input function. Threshold logic latch (TLL), among implementations of threshold logic, is functionally equivalent to a multi-input function with an edge triggered flip-flop, which stands out to improve area and both dynamic and leakage power consumption,

The advent of threshold logic simplifies the traditional Boolean logic to the single level multi-input function. Threshold logic latch (TLL), among implementations of threshold logic, is functionally equivalent to a multi-input function with an edge triggered flip-flop, which stands out to improve area and both dynamic and leakage power consumption, providing an appropriate design alternative. Accordingly, the TLL standard cell library is designed. Through technology mapping, hybrid circuit is generated by absorbing the logic cone backward from each flip-flip to get the smallest remaining feeder. With the scan test methodology adopted, design for testability (DFT) is proposed, including scan element design and scan chain insertion. Test synthesis flow is then introduced, according to the Cadence tool, RTL compiler. Test application is the process of applying vectors and the response analysis, which is mainly about the testbench design. A parameterized generic self-checking Verilog testbench is designed for static fault detection. Test development refers to the fault modeling, and test generation. Firstly, functional truth table test generation on TLL cells is proposed. Before the truth table test of the threshold function, the dependence of sequence of vectors applied, i.e., the dependence of current state on the previous state, should be eliminated. Transition test (dynamic pattern) on all weak inputs is proved to be able to test the reset function, which is supposed to erase the history in the reset phase before every evaluation phase. Remaining vectors in the truth table except the weak inputs are then applied statically (static pattern). Secondly, dynamic patterns for all weak inputs are proposed to detect structural transistor level faults analyzed in the TLL cell, with single fault assumption and stuck-at faults, stuck-on faults, and stuck-open faults under consideration. Containing those patterns, the functional test covers all testable structural faults inside the TLL. Thirdly, with the scope of the whole hybrid netlist, the procedure of test generation is proposed with three steps: scan chain test; test of feeders and other scan elements except TLLs; functional pattern test of TLL cells. Implementation of this procedure is discussed in the automatic test pattern generation (ATPG) chapter.
ContributorsHu, Yang (Author) / Vrudhula, Sarma (Thesis advisor) / Barnaby, Hugh (Committee member) / Yu, Shimeng (Committee member) / Arizona State University (Publisher)
Created2013
153890-Thumbnail Image.png
Description
The recent flurry of security breaches have raised serious concerns about the security of data communication and storage. A promising way to enhance the security of the system is through physical root of trust, such as, through use of physical unclonable functions (PUF). PUF leverages the inherent randomness in physical

The recent flurry of security breaches have raised serious concerns about the security of data communication and storage. A promising way to enhance the security of the system is through physical root of trust, such as, through use of physical unclonable functions (PUF). PUF leverages the inherent randomness in physical systems to provide device specific authentication and encryption.

In this thesis, first the design of a highly reliable resistive random access memory (RRAM) PUF is presented. Compared to existing 1 cell/bit RRAM, here the sum of the read-out currents of multiple RRAM cells are used for generating one response bit. This method statistically minimizes any early-lifetime failure due to RRAM retention degradation at high temperature or under voltage stress. Using a device model that was calibrated using IMEC HfOx RRAM experimental data, it was shown that an 8 cells/bit architecture achieves 99.9999% reliability for a lifetime >10 years at 125℃ . Also, the hardware area overhead of the proposed 8 cells/bit RRAM PUF architecture was smaller than 1 cell/bit RRAM PUF that requires error correction coding to achieve the same reliability.

Next, a basic security primitive is presented, where the RRAM PUF is embedded in the cryptographic module, SHA-256. This architecture is referred to as Embedded PUF or EPUF. EPUF has a security advantage over SHA-256 as it never exposes the PUF response to the outside world. Instead, in each round, the PUF response is used to change a few bits of the message word to produce a unique message digest for each IC. The use of EPUF as a key generation module for AES is also shown. The hardware area requirement for SHA-256 and AES-128 is then analyzed using synthesis results based on TSMC 65nm library. It is shown that the area overhead of 8 cells/bit RRAM PUF is only 1.08% of the SHA-256 module and 0.04% of the AES-128 module. The security analysis of the PUF based systems is also presented. It is shown that the EPUF-based systems are resistant towards standard attacks on PUFs, and that the security of the cryptographic modules is not compromised.
ContributorsShrivastava, Ayush (Author) / Chakrabarti, Chaitali (Thesis advisor) / Yu, Shimeng (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2015
153898-Thumbnail Image.png
Description
Soft magnetic materials have been studied extensively in the recent past due to their applications in micro-transformers, micro-inductors, spin dependent memories etc. The unique features of these materials are the high frequency operability and high magnetic anisotropy. High uniaxial anisotropy is one of the most important properties for these materials.

Soft magnetic materials have been studied extensively in the recent past due to their applications in micro-transformers, micro-inductors, spin dependent memories etc. The unique features of these materials are the high frequency operability and high magnetic anisotropy. High uniaxial anisotropy is one of the most important properties for these materials. There are many methods to achieve high anisotropy energy (Hk) which include sputtering with presence of magnetic field, exchange bias and oblique angle sputtering.

This research project focuses on analyzing different growth techniques of thin films of Cobalt, Zirconium Tantalum Boron (CZTB) and the quality of the films resulted. The measurements include magnetic moment measurements using a Vibrating Sample Magnetometer, electrical measurements using 4 point resistivity methods and structural characterization using Scanning Electron Microscopy. Subtle changes in the growth mechanism result in different properties of these films and they are most suited for certain applications.

The growth methods presented in this research are oblique angled sputtering with localized magnetic field and oblique sputtering without presence of magnetic field. The uniaxial anisotropy can be controlled by changing the angle during sputtering. The resulting film of CZTB is tested for magnetic anisotropy and soft magnetism at room temperature by using Lakeshore 7500 Vibrating Sample Magnetometer. The results are presented, analyzed and explained using characterization techniques. Future work includes magnetic field presence during deposition, magnetic devices of this film with giga hertz range operating frequencies.
ContributorsTummalapalli, Sridutt (Author) / Yu, Hongbin (Thesis advisor) / Jiang, Hanqing (Committee member) / Yu, Shimeng (Committee member) / Arizona State University (Publisher)
Created2015