Matching Items (68)
Filtering by

Clear all filters

152331-Thumbnail Image.png
Description
Digital to analog converters (DACs) find widespread use in communications equipment. Most commercially available DAC's which are intended to be used in transmitter applications come in a dual configuration for carrying the in phase (I) and quadrature (Q) data and feature on chip digital mixing. Digital mixing offers many benefits

Digital to analog converters (DACs) find widespread use in communications equipment. Most commercially available DAC's which are intended to be used in transmitter applications come in a dual configuration for carrying the in phase (I) and quadrature (Q) data and feature on chip digital mixing. Digital mixing offers many benefits concerning I and Q matching but has one major drawback; the update rate of the DAC must be higher than the intermediate frequency (IF) which is most commonly a factor of 4. This drawback motivates the need for interpolation so that a low update rate can be used for components preceding the DACs. In this thesis the design of an interpolating DAC integrated circuit (IC) to be used in a transmitter application for generating a 100MHz IF is presented. Many of the transistor level implementations are provided. The tradeoffs in the design are analyzed and various options are discussed. This thesis provides a basic foundation for designing an IC of this nature and will give the reader insight into potential areas of further research. At the time of this writing the chip is in fabrication therefore this document does not contain test results.
ContributorsNixon, Cliff (Author) / Bakkaloglu, Bertan (Thesis advisor) / Arizona State University (Publisher)
Created2013
151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152918-Thumbnail Image.png
Description
Isolated DC/DC converters are used to provide electrical isolation between two supply domain systems. A fully integrated isolated DC/DC converter having no board-level components and fabricated using standard integrated circuits (IC) process is highly desirable in order to increase the system reliability and reduce costs. The isolation between the low-voltage

Isolated DC/DC converters are used to provide electrical isolation between two supply domain systems. A fully integrated isolated DC/DC converter having no board-level components and fabricated using standard integrated circuits (IC) process is highly desirable in order to increase the system reliability and reduce costs. The isolation between the low-voltage side and high-voltage side of the converter is realized by a transformer that transfers energy while blocking the DC loop. The resonant mode power oscillator is used to enable high efficiency power transfer. The on-chip transformer is expected to have high coil inductance, high quality factors and high coupling coefficient to reduce the loss in the oscillation. The performance of a transformer is highly dependent on the vertical structure, horizontal geometry and other indispensable structures that make it compatible with the IC process such as metal fills and patterned ground shield (PGS). With the help of three-dimensional (3-D) electro-magnetic (EM) simulation software, the 3-D transformer model is simulated and the simulation result is got with high accuracy.

In this thesis an on-chip transformer for a fully integrated DC/DC converter using standard IC process is developed. Different types of transformers are modeled and simulated in HFSS. The performances are compared to select the optimum design. The effects of the additional structures including PGS and metal fills are also simulated. The transformer is tested with a network analyzer and the testing results show a good consistency with the simulation results when taking the chip traces, printed circuit board (PCB) traces, bond wires and SMA connectors into account.
ContributorsZhao, Yao (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
152924-Thumbnail Image.png
Description
Modern day deep sub-micron SOC architectures often demand very low supply noise levels. As supply voltage decreases with decreasing deep sub-micron gate length, noise on the power supply starts playing a dominant role in noise-sensitive analog blocks, especially high precision ADC, PLL, and RF SOC's. Most handheld and portable applications

Modern day deep sub-micron SOC architectures often demand very low supply noise levels. As supply voltage decreases with decreasing deep sub-micron gate length, noise on the power supply starts playing a dominant role in noise-sensitive analog blocks, especially high precision ADC, PLL, and RF SOC's. Most handheld and portable applications and highly sensitive medical instrumentation circuits tend to use low noise regulators as on-chip or on board power supply. Nonlinearities associated with LNA's, mixers and oscillators up-convert low frequency noise with the signal band. Specifically, synthesizer and TCXO phase noise, LNA and mixer noise figure, and adjacent channel power ratios of the PA are heavily influenced by the supply noise and ripple. This poses a stringent requirement on a very low noise power supply with high accuracy and fast transient response. Low Dropout (LDO) regulators are preferred over switching regulators for these applications due to their attractive low noise and low ripple features. LDO's shield sensitive blocks from high frequency fluctuations on the power supply while providing high accuracy, fast response supply regulation.

This research focuses on developing innovative techniques to reduce the noise of any generic wideband LDO, stable with or without load capacitor. The proposed techniques include Switched RC Filtering to reduce the Bandgap Reference noise, Current Mode Chopping to reduce the Error Amplifier noise & MOS-R based RC filter to reduce the noise due to bias current. The residual chopping ripple was reduced using a Switched Capacitor notch filter. Using these techniques, the integrated noise of a wideband LDO was brought down to 15µV in the integration band of 10Hz to 100kHz. These techniques can be integrated into any generic LDO without any significant area overhead.
ContributorsMagod Ramakrishna, Raveesh (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
153036-Thumbnail Image.png
Description
High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area

High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area is required to meet matching requirements for optimal linearity and thus, the overall speed of the DAC is limited.

In this thesis work, a 12-bit current-steering DAC was designed with current sources scaled below the required matching size to decrease the area and increase the overall speed of the DAC. By scaling the current sources, however, errors due to random mismatch between current sources will arise and additional calibration hardware is necessary to ensure 12-bit linearity. This work presents how to implement a self-calibration DAC that works to fix amplitude errors while maintaining a lower overall area. Additionally, the DAC designed in this thesis investigates the implementation feasibility of a data-interleaved architecture. Data interleaving can increase the total bandwidth of the DACs by 2 with an increase in SQNR by an additional 3 dB.

The final results show that the calibration method can effectively improve the linearity of the DAC. The DAC is able to run up to 400 MSPS frequencies with a 75 dB SFDR performance and above 87 dB SFDR performance at update rates of 200 MSPS.
ContributorsJankunas, Benjamin (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2014
153039-Thumbnail Image.png
Description
Switching Converters (SC) are an excellent choice for hand held devices due to their high power conversion efficiency. However, they suffer from two major drawbacks. The first drawback is that their dynamic response is sensitive to variations in inductor (L) and capacitor (C) values. A cost effective solution is implemented

Switching Converters (SC) are an excellent choice for hand held devices due to their high power conversion efficiency. However, they suffer from two major drawbacks. The first drawback is that their dynamic response is sensitive to variations in inductor (L) and capacitor (C) values. A cost effective solution is implemented by designing a programmable digital controller. Despite variations in L and C values, the target dynamic response can be achieved by computing and programming the filter coefficients for a particular L and C. Besides, digital controllers have higher immunity to environmental changes such as temperature and aging of components. The second drawback of SCs is their poor efficiency during low load conditions if operated in Pulse Width Modulation (PWM) mode. However, if operated in Pulse Frequency Modulation (PFM) mode, better efficiency numbers can be achieved. A mostly-digital way of detecting PFM mode is implemented. Besides, a slow serial interface to program the chip, and a high speed serial interface to characterize mixed signal blocks as well as to ship data in or out for debug purposes are designed. The chip is taped out in 0.18µm IBM's radiation hardened CMOS process technology. A test board is built with the chip, external power FETs and driver IC. At the time of this writing, PWM operation, PFM detection, transitions between PWM and PFM, and both serial interfaces are validated on the test board.
ContributorsMumma Reddy, Abhiram (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ogras, Umit Y. (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2014
153113-Thumbnail Image.png
Description
As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC

As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC converter is connected to the output of each PV module. The DC optimizer architecture has the advantage of performing maximum power-point tracking (MPPT) at the module level, without the high cost of using an inverter on each module (the "microinverter" architecture). This work details the design of a proposed DC optimizer. The design incorporates a series-input parallel-output topology to implement MPPT at the sub-module level. This topology has some advantages over the more common series-output DC optimizer, including relaxed requirements for the system's inverter. An autonomous control scheme is proposed for the series-connected converters, so that no external control signals are needed for the system to operate, other than sunlight. The DC optimizer in this work is designed with an emphasis on efficiency, and to that end it uses GaN FETs and an active clamp technique to reduce switching and conduction losses. As with any parallel-output converter, phase interleaving is essential to minimize output RMS current losses. This work proposes a novel phase-locked loop (PLL) technique to achieve interleaving among the series-input converters.
ContributorsLuster, Daniel (Author) / Ayyanar, Raja (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2014
153401-Thumbnail Image.png
Description
Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms integrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When the MPSoC operates close to its peak performance, power dissipation easily increases the temperature, hence adversely impacts reliability. Since using a fan is not a viable solution for hand-held devices, there

Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms integrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When the MPSoC operates close to its peak performance, power dissipation easily increases the temperature, hence adversely impacts reliability. Since using a fan is not a viable solution for hand-held devices, there is a strong need for dynamic thermal and power management (DTPM) algorithms that can regulate temperature with minimal performance impact. This abstract presents a DTPM algorithm based on a practical temperature prediction methodology using system identification. The DTPM algorithm dynamically computes a power budget using the predicted temperature, and controls the types and number of active processors as well as their frequencies. Experiments on an octa-core big.LITTLE processor and common Android apps demonstrate that the proposed technique predicts temperature within 3% accuracy, while the DTPM algorithm provides around 6x reduction in temperature variance, and as large as 16% reduction in total platform power compared to using a fan.
ContributorsSingla, Gaurav (Author) / Ogras, Umit Y. (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Unver, Ali (Committee member) / Arizona State University (Publisher)
Created2015
153227-Thumbnail Image.png
Description
Negative Bias Temperature Instability (NBTI) is commonly seen in p-channel transistors under negative gate voltages at an elevated temperature. The interface traps, oxide traps and NBTI mechanisms are discussed and their effect on circuit degradation and results are discussed. This thesis focuses on developing a model for simulating impact of

Negative Bias Temperature Instability (NBTI) is commonly seen in p-channel transistors under negative gate voltages at an elevated temperature. The interface traps, oxide traps and NBTI mechanisms are discussed and their effect on circuit degradation and results are discussed. This thesis focuses on developing a model for simulating impact of NBTI effects at circuit level. The model mimics the effects of degradation caused by the defects.

The NBTI model developed in this work is validated and sanity checked by using the simulation data from silvaco and gives excellent results. Furthermore the susceptibility of CMOS circuits such as the CMOS inverter, and a ring oscillator to NBTI is investigated. The results show that the oscillation frequency of a ring oscillator decreases and the SET pulse broadens with the NBTI.
ContributorsPadala, Sudheer (Author) / Barnaby, Hugh (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
150384-Thumbnail Image.png
Description
In this thesis, a Built-in Self Test (BiST) based testing solution is proposed to measure linear and non-linear impairments in the RF Transmitter path using analytical approach. Design issues and challenges with the impairments modeling and extraction in transmitter path are discussed. Transmitter is modeled for I/Q gain & phase

In this thesis, a Built-in Self Test (BiST) based testing solution is proposed to measure linear and non-linear impairments in the RF Transmitter path using analytical approach. Design issues and challenges with the impairments modeling and extraction in transmitter path are discussed. Transmitter is modeled for I/Q gain & phase mismatch, system non-linearity and DC offset using Matlab. BiST architecture includes a peak detector which includes a self mode mixer and 200 MHz filter. Self Mode mixing operation with filtering removes the high frequency signal contents and allows performing analysis on baseband frequency signals. Transmitter impairments were calculated using spectral analysis of output from the BiST circuitry using an analytical method. Matlab was used to simulate the system with known test impairments and impairment values from simulations were calculated based on system modeling in Mathematica. Simulated data is in good correlation with input test data along with very fast test time and high accuracy. The key contribution of the work is that, system impairments are extracted from transmitter response at baseband frequency using envelope detector hence eliminating the need of expensive high frequency ATE (Automated Test Equipments).
ContributorsGoyal, Nitin (Author) / Ozev, Sule (Thesis advisor) / Duman, Tolga (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011