Matching Items (139)
Filtering by

Clear all filters

152239-Thumbnail Image.png
Description
Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the

Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the porous rock frame. This tensile stress almost always exceeds the tensile strength of the rock and it causes a tensile failure of the rock, leading to wellbore instability. In a porous rock, not all pores are choked at the same flow rate, and when just one pore is choked, the flow through the entire porous medium should be considered choked as the gas pressure gradient at the point of choking becomes singular. This thesis investigates the choking condition for compressible gas flow in a single microscopic pore. Quasi-one-dimensional analysis and axisymmetric numerical simulations of compressible gas flow in a pore scale varicose tube with a number of bumps are carried out, and the local Mach number and pressure along the tube are computed for the flow near choking condition. The effects of tube length, inlet-to-outlet pressure ratio, the number of bumps and the amplitude of the bumps on the choking condition are obtained. These critical values provide guidance for avoiding the choking condition in practice.
ContributorsYuan, Jing (Author) / Chen, Kangping (Thesis advisor) / Wang, Liping (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
152099-Thumbnail Image.png
Description
The body is capable of regulating hunger in several ways. Some of these hunger regulation methods are innate, such as genetics, and some, such as the responses to stress and to the smell of food, are innate but can be affected by body conditions such as BMI and physical activity.

The body is capable of regulating hunger in several ways. Some of these hunger regulation methods are innate, such as genetics, and some, such as the responses to stress and to the smell of food, are innate but can be affected by body conditions such as BMI and physical activity. Further, some hunger regulation methods stem from learned behaviors originating from cultural pressures or parenting styles. These latter regulation methods for hunger can be grouped into the categories: emotion, environment, and physical. The factors that regulate hunger can also influence the incidence of disordered eating, such as eating in the absence of hunger (EAH). Eating in the absence of hunger can occur in one of two scenarios, continuous EAH or beginning EAH. College students are at a particularly high risk for EAH and weight gain due to stress, social pressures, and the constant availability of energy dense and nutrient poor food options. The purpose of this study is to validate a modified EAH-C survey in college students and to discover which of the three latent factors (emotion, environment, physical) best predicts continual and beginning EAH. To do so, a modified EAH-C survey, with additional demographic components, was administered to students at a major southwest university. This survey contained two questions, one each for continuing and beginning EAH, regarding 14 factors related to emotional, physical, or environmental reasons that may trigger EAH. The results from this study revealed that the continual and beginning EAH surveys displayed good internal consistency reliability. We found that for beginning and continuing EAH, although emotion is the strongest predictor of EAH, all three latent factors are significant predictors of EAH. In addition, we found that environmental factors had the greatest influence on an individual's likelihood to continue to eat in the absence of hunger. Due to statistical abnormalities and differing numbers of factors in each category, we were unable to determine which of the three factors exerted the greatest influence on an individual's likelihood to begin eating in the absence of hunger. These results can be utilized to develop educational tools aimed at reducing EAH in college students, and ultimately reducing the likelihood for unhealthy weight gain and health complications related to obesity.
ContributorsGoett, Taylor (Author) / Johnston, Carol (Thesis advisor) / Lee, Chong (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2013
152249-Thumbnail Image.png
Description
For CFD validation, hypersonic flow fields are simulated and compared with experimental data specifically designed to recreate conditions found by hypersonic vehicles. Simulated flow fields on a cone-ogive with flare at Mach 7.2 are compared with experimental data from NASA Ames Research Center 3.5" hypersonic wind tunnel. A parametric study

For CFD validation, hypersonic flow fields are simulated and compared with experimental data specifically designed to recreate conditions found by hypersonic vehicles. Simulated flow fields on a cone-ogive with flare at Mach 7.2 are compared with experimental data from NASA Ames Research Center 3.5" hypersonic wind tunnel. A parametric study of turbulence models is presented and concludes that the k-kl-omega transition and SST transition turbulence model have the best correlation. Downstream of the flare's shockwave, good correlation is found for all boundary layer profiles, with some slight discrepancies of the static temperature near the surface. Simulated flow fields on a blunt cone with flare above Mach 10 are compared with experimental data from CUBRC LENS hypervelocity shock tunnel. Lack of vibrational non-equilibrium calculations causes discrepancies in heat flux near the leading edge. Temperature profiles, where non-equilibrium effects are dominant, are compared with the dissociation of molecules to show the effects of dissociation on static temperature. Following the validation studies is a parametric analysis of a hypersonic inlet from Mach 6 to 20. Compressor performance is investigated for numerous cowl leading edge locations up to speeds of Mach 10. The variable cowl study showed positive trends in compressor performance parameters for a range of Mach numbers that arise from maximizing the intake of compressed flow. An interesting phenomenon due to the change in shock wave formation for different Mach numbers developed inside the cowl that had a negative influence on the total pressure recovery. Investigation of the hypersonic inlet at different altitudes is performed to study the effects of Reynolds number, and consequently, turbulent viscous effects on compressor performance. Turbulent boundary layer separation was noted as the cause for a change in compressor performance parameters due to a change in Reynolds number. This effect would not be noticeable if laminar flow was assumed. Mach numbers up to 20 are investigated to study the effects of vibrational and chemical non-equilibrium on compressor performance. A direct impact on the trends on the kinetic energy efficiency and compressor efficiency was found due to dissociation.
ContributorsOliden, Daniel (Author) / Lee, Tae-Woo (Thesis advisor) / Peet, Yulia (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
152067-Thumbnail Image.png
Description
A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine

A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine the complete velocity history of the droplets and entrained gas in the spray. The model was extensively validated through comparison with experiment and it was found that the model could predict the correct droplet size with high accuracy for a wide range of operating conditions. Based on detailed analysis, it was found that the energy model has a tendency to overestimate the droplet diameters for very low injection velocities, Weber numbers, and cone angles. A full parametric study was also performed in order to unveil some underlying behavior of pressure-swirl atomizers. It was found that at high injection velocities, the kinetic energy in the spray is significantly larger than the surface tension energy, therefore, efforts into improving atomization quality by changing the liquid's surface tension may not be the most productive. From the parametric studies it was also shown how the Sauter mean diameter and entrained velocities vary with increasing ambient gas density. Overall, the present energy model has the potential to provide quick and reasonably accurate solutions for a wide range of operating conditions enabling the user to determine how different injection parameters affect the spray quality.
ContributorsMoradi, Ali (Author) / Lee, Taewoo (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151645-Thumbnail Image.png
Description
Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the

Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the hotter months various cooling methods are used such as refrigeration inlet cooling systems, evaporative methods, and thermal energy storage systems. One of the more widely used is the evaporative systems because it is one of the safest and easiest to utilize method. However, the behavior of water droplets within the inlet to the turbine has not been extensively studied or documented. It is important to understand how the droplets behave within the inlet so that water droplets above a critical diameter will not enter the compressor and cause damage to the compressor blades. In order to do this a FLUENT simulation was constructed in order to determine the behavior of the water droplets and if any droplets remain at the exit of the inlet, along with their size. In order to do this several engineering drawings were obtained from SRP and studies in order to obtain the correct dimensions. Then the simulation was set up using data obtained from SRP and Parker-Hannifin, the maker of the spray nozzles. Then several sets of simulations were run in order to see how the water droplets behaved under various conditions. These results were then analyzed and quantified so that they could be easily understood. The results showed that the possible damage to the compressor increased with increasing temperature at a constant relative humidity. This is due in part to the fact that in order to keep a constant relative humidity at varying temperatures the mass fraction of water vapor in the air must be changed. As temperature increases the water vapor mass fraction must increase in order to maintain a constant relative humidity. This in turn makes it slightly increases the evaporation time of the water droplets. This will then lead to more droplets exiting the inlet and at larger diameters.
ContributorsHargrave, Kevin (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Chen, Kaangping (Committee member) / Arizona State University (Publisher)
Created2013
151284-Thumbnail Image.png
Description
Dietary protein is known to increase postprandial thermogenesis more so than carbohydrates or fats, probably related to the fact that amino acids have no immediate form of storage in the body and can become toxic if not readily incorporated into body tissues or excreted. It is also well documented that

Dietary protein is known to increase postprandial thermogenesis more so than carbohydrates or fats, probably related to the fact that amino acids have no immediate form of storage in the body and can become toxic if not readily incorporated into body tissues or excreted. It is also well documented that subjects report greater satiety on high- versus low-protein diets and that subject compliance tends to be greater on high-protein diets, thus contributing to their popularity. What is not as well known is how a high-protein diet affects resting metabolic rate over time, and what is even less well known is if resting metabolic rate changes significantly when a person consuming an omnivorous diet suddenly adopts a vegetarian one. This pilot study sought to determine whether subjects adopting a vegetarian diet would report decreased satiety or demonstrate a decreased metabolic rate due to a change in protein intake and possible increase in carbohydrates. Further, this study sought to validate a new device called the SenseWear Armband (SWA) to determine if it might be sensitive enough to detect subtle changes in metabolic rate related to diet. Subjects were tested twice on all variables, at baseline and post-test. Independent and related samples tests revealed no significant differences between or within groups for any variable at any time point in the study. The SWA had a strong positive correlation to the Oxycon Mobile metabolic cart but due to a lack of change in metabolic rate, its sensitivity was undetermined. These data do not support the theory that adopting a vegetarian diet results in a long-term change in metabolic rate.
ContributorsMoore, Amy (Author) / Johnston, Carol (Thesis advisor) / Appel, Christy (Thesis advisor) / Gaesser, Glenn (Committee member) / Arizona State University (Publisher)
Created2012
151294-Thumbnail Image.png
Description
The partitioning of available solar energy into different fluxes at the Earth's surface is important in determining different physical processes, such as turbulent transport, subsurface hydrology, land-atmospheric interactions, etc. Direct measurements of these turbulent fluxes were carried out using eddy-covariance (EC) towers. However, the distribution of EC towers is sparse

The partitioning of available solar energy into different fluxes at the Earth's surface is important in determining different physical processes, such as turbulent transport, subsurface hydrology, land-atmospheric interactions, etc. Direct measurements of these turbulent fluxes were carried out using eddy-covariance (EC) towers. However, the distribution of EC towers is sparse due to relatively high cost and practical difficulties in logistics and deployment. As a result, data is temporally and spatially limited and is inadequate to be used for researches at large scales, such as regional and global climate modeling. Besides field measurements, an alternative way is to estimate turbulent fluxes based on the intrinsic relations between surface energy budget components, largely through thermodynamic equilibrium. These relations, referred as relative efficiency, have been included in several models to estimate the magnitude of turbulent fluxes in surface energy budgets such as latent heat and sensible heat. In this study, three theoretical models based on the lumped heat transfer model, the linear stability analysis and the maximum entropy principle respectively, were investigated. Model predictions of relative efficiencies were compared with turbulent flux data over different land covers, viz. lake, grassland and suburban surfaces. Similar results were observed over lake and suburban surface but significant deviation is found over vegetation surface. The relative efficiency of outgoing longwave radiation is found to be orders of magnitude deviated from theoretic predictions. Meanwhile, results show that energy partitioning process is influenced by the surface water availability to a great extent. The study provides insight into what property is determining energy partitioning process over different land covers and gives suggestion for future models.
ContributorsYang, Jiachuan (Author) / Wang, Zhihua (Thesis advisor) / Huang, Huei-Ping (Committee member) / Vivoni, Enrique (Committee member) / Mays, Larry (Committee member) / Arizona State University (Publisher)
Created2012
151503-Thumbnail Image.png
Description
Objective: Vinegar consumption studies have demonstrated possible therapeutic effects in reducing HbA1c and postprandial glycemia. The purpose of the study was to closely examine the effects of a commercial vinegar drink on daily fluctuations in fasting glucose concentrations and postprandial glycemia, and on HbA1c, in individuals at risk for Type

Objective: Vinegar consumption studies have demonstrated possible therapeutic effects in reducing HbA1c and postprandial glycemia. The purpose of the study was to closely examine the effects of a commercial vinegar drink on daily fluctuations in fasting glucose concentrations and postprandial glycemia, and on HbA1c, in individuals at risk for Type 2 Diabetes Mellitus (T2D). Design: Thirteen women and one man (21-62 y; mean, 46.0±3.9 y) participated in this 12-week parallel-arm trial. Participants were recruited from a campus community and were healthy and not diabetic by self-report. Participants were not prescribed oral hypoglycemic medications or insulin; other medications were allowed if use was stable for > 3 months. Subjects were randomized to one of two groups: VIN (8 ounces vinegar drink providing 1.5 g acetic acid) or CON (1 vinegar pill providing 0.04 g acetic acid). Treatments were taken twice daily immediately prior to the lunch and dinner meals. Venous blood samples were drawn at trial weeks 0 and 12 to measure insulin, fasting glucose, and HbA1c. Subjects recorded fasting glucose and 2-h postprandial glycemia concentrations daily using a glucometer. Results: The VIN group showed significant reductions in fasting capillary blood glucose concentrations (p=0.05) that were immediate and sustained throughout the duration of the study. The VIN group had reductions in 2-h postprandial glucose (mean change of −7.6±6.8 mg/dL over the 12-week trial), but this value was not significantly different than that for the CON group (mean change of 3.3±5.3 mg/dL over the 12-week trial, p=0.232). HbA1c did not significantly change (p=0.702), but the reduction in HbA1c in the VIN group, −0.14±0.1%, may have physiological relevance. Conclusions: Significant reductions in HbA1c were not observed after daily consumption of a vinegar drink containing 1.5 g acetic acid in non-diabetic individuals. However, the vinegar drink did significantly reduce fasting capillary blood glucose concentrations in these individuals as compared to a vinegar pill containing 0.04 g acetic acid. These results support a therapeutic effect for vinegar in T2D prevention and progression, specifically in high-risk populations.
ContributorsQuagliano, Samantha (Author) / Johnston, Carol (Thesis advisor) / Appel, Christy (Committee member) / Dixon, Kathleen (Committee member) / Arizona State University (Publisher)
Created2013
151504-Thumbnail Image.png
Description
Objective: The purpose of this randomized parallel arm trial was to demonstrate the effects of daily fish oil supplementation (600mg per day for eight weeks) on body composition and body mass in young healthy women, aged 18-38, at a large southwestern university. Design: 26 non-obese (mean BMI 23.7±0.6 kg/m2), healthy

Objective: The purpose of this randomized parallel arm trial was to demonstrate the effects of daily fish oil supplementation (600mg per day for eight weeks) on body composition and body mass in young healthy women, aged 18-38, at a large southwestern university. Design: 26 non-obese (mean BMI 23.7±0.6 kg/m2), healthy women (18-38y; mean, 23.5±1.1 y) from a southwestern Arizona university campus community completed the study. Subjects were healthy, non-smokers, consuming less than 3.5 oz of fish per week according to self-report. Participants were randomized to one of two groups: FISH (600 mg omega-3 fatty acids provided in one gel capsule per day), or CON (1000 mg coconut oil placebo provided in one gel capsule per day). Body weight, BMI, and percent body fat were measured using a stadiometer and bioelectrical impedance scale at the screening visit and intervention weeks 1, 4, and 8. 24-hour dietary recalls were also performed at weeks 1 and 8. Results: 8 weeks of omega-3 fatty acid supplementation did not significantly alter body weight (p=0.830), BMI (p=1.00), or body fat percentage (p=0.600) as compared to placebo. Although not statistically significant, 24-hour dietary recalls performed at the beginning and end of the intervention revealed a trend towards increased caloric intake in the FISH group and decreased caloric intake in the CON group throughout the course of the study (p=0.069). If maintained, this difference in caloric intake could have physiological relevance. Conclusions: Omega-3 fatty acids do not significantly alter body weight or body composition in healthy young females. These findings do not refute the current recommendations for Americans to consume at least 8 oz of omega-3-rich seafood per week, supplying 250 mg EPA and DHA per day. More research is needed to investigate the potential for omega-3 fatty acids to modulate daily caloric intake.
ContributorsTeran, Bianca (Author) / Johnston, Carol (Thesis advisor) / Johnson, Melinda (Committee member) / Ohri-Vachaspati, Punam (Committee member) / Arizona State University (Publisher)
Created2013
151520-Thumbnail Image.png
Description
In 2002, a scientifically derived food guide pyramid for vegetarians, the Modified Food Guide for Lacto-ovo-vegetarians and Vegans was published and well received. Now that 10 years have passed, new scientific literature regarding the bioavailability of the nutrients of key concern in vegetarian diets has been published, and the graphical

In 2002, a scientifically derived food guide pyramid for vegetarians, the Modified Food Guide for Lacto-ovo-vegetarians and Vegans was published and well received. Now that 10 years have passed, new scientific literature regarding the bioavailability of the nutrients of key concern in vegetarian diets has been published, and the graphical format of the nation's food guide has evolved from a pyramid shape into a circular plate. The objective of this research was to examine the post-2002 literature regarding the bioavailability of key nutrients in vegetarian diets; to use this information to update the recommendations made in the 2002 Modified Food Guide Pyramid for Lacto-ovo-vegetarians and Vegans; and to adapt this revised food plan to the new USDA MyPlate format. This process involved reviewing the scientific literature to determine if the DRIs for the nutrients of key concern in vegetarian diets are adequate for the vegetarian population and using this information to develop new recommendations for vegetarians if necessary, analyzing the nutrient content of representative foods in different food groups, reconfiguring the food groups so that foods with like nutrient components were grouped together, determining the number of servings of each food group required to meet vegetarians' nutrient requirements at three caloric levels, and developing sample menus. A circular plate graphic, the Vegetarian Plate, was designed to illustrate the recommendations of this updated food guide. This updated, scientifically derived food guide provides a sound base for diet planning for lacto-ovo-vegetarians and vegans. Further research is needed to assess the Vegetarian Plate's adequacy for children, pregnant and lactating women, athletes, and individuals with medical conditions or chronic diseases.
ContributorsFladell, Lauren (Author) / Johnston, Carol (Thesis advisor) / Vaughan, Linda (Committee member) / Shepard, Christina (Committee member) / Arizona State University (Publisher)
Created2013