Matching Items (128)

Filtering by

Clear all filters

149852-Thumbnail Image.png

Aging predictive models and simulation methods for analog and mixed-signal circuits

Description

Negative bias temperature instability (NBTI) and channel hot carrier (CHC) are important reliability issues impacting analog circuit performance and lifetime. Compact reliability models and efficient simulation methods are essential for circuit level reliability prediction. This work proposes a set of

Negative bias temperature instability (NBTI) and channel hot carrier (CHC) are important reliability issues impacting analog circuit performance and lifetime. Compact reliability models and efficient simulation methods are essential for circuit level reliability prediction. This work proposes a set of compact models of NBTI and CHC effects for analog and mixed-signal circuit, and a direct prediction method which is different from conventional simulation methods. This method is applied in circuit benchmarks and evaluated. This work helps with improving efficiency and accuracy of circuit aging prediction.

Contributors

Agent

Created

Date Created
2011

152490-Thumbnail Image.png

Influence of grounded back electrode on AC creepage breakdown characteristics

Description

This thesis focuses on the influence of a grounded back electrode on the breakdown characteristics. The back electrode is an electrode which attaches at the back side of solid insulation. Insulation with grounded back electrode is a common type of

This thesis focuses on the influence of a grounded back electrode on the breakdown characteristics. The back electrode is an electrode which attaches at the back side of solid insulation. Insulation with grounded back electrode is a common type of insulation which is adopted in many high voltage power devices. While most of the power equipment work under AC voltage, most of the research on back electrode is focused on the DC voltage. Therefore, it is necessary to deeply investigate the influence of the back electrode under AC applied voltage. To investigate the influence of back electrode, the research is separated into two phases, which are the experiment phase and the electric field analysis phase. In the experiments, the breakdown voltages for both with and without back electrode are obtained. The experimental results indicate that the grounded back electrode does have impact on the breakdown characteristics. Then with the breakdown voltage, based on real experiment model, the electric field is analyzed using computer software. From the field simulation result, it is found that the back electrode also influences the electric field distribution. The inter relationship between the electric field and breakdown voltage is the key to explain all the results and phenomena observed during the experiment. Additionally, the influence of insulation barrier on breakdown is also investigated. Compared to the case without ground electrode, inserting a barrier into the gap can more significantly improve breakdown voltage.

Contributors

Agent

Created

Date Created
2014

152257-Thumbnail Image.png

Grounding systems analysis and optimization

Description

Today, more and more substations are created and reconstructed to satisfy the growing electricity demands for both industry and residence. It is always a big concern that the designed substation must guarantee the safety of persons who are in the

Today, more and more substations are created and reconstructed to satisfy the growing electricity demands for both industry and residence. It is always a big concern that the designed substation must guarantee the safety of persons who are in the area of the substation. As a result, the safety metrics (touch voltage, step voltage and grounding resistance), which should be considered at worst case, are supposed to be under the allowable values. To improve the accuracy of calculating safety metrics, at first, it is necessary to have a relatively accurate soil model instead of uniform soil model. Hence, the two-layer soil model is employed in this thesis. The new approximate finite equations with soil parameters (upper-layer resistivity, lower-layer resistivity and upper-layer thickness) are used, which are developed based on traditional infinite expression. The weighted- least-squares regression with new bad data detection method (adaptive weighted function) is applied to fit the measurement data from the Wenner-method. At the end, a developed error analysis method is used to obtain the error (variance) of each parameter. Once the soil parameters are obtained, it is possible to use a developed complex images method to calculate the mutual (self) resistance, which is the induced voltage of a conductor/rod by unit current form another conductor/rod. The basis of the calculation is Green's function between two point current sources, thus, it can be expanded to either the functions between point and line current sources, or the functions between line and line current sources. Finally, the grounding system optimization is implemented with developed three-step optimization strategy using MATLAB solvers. The first step is using "fmincon" solver to optimize the cost function with differentiable constraint equations from IEEE standard. The result of the first step is set as the initial values to the second step, which is using "patternsearch" solver, thus, the non-differentiable and more accurate constraint calculation can be employed. The final step is a backup step using "ga" solver, which is more robust but lager time cost.

Contributors

Agent

Created

Date Created
2013

152151-Thumbnail Image.png

A CMOS analog front-end circuit for micro-fluxgate sensors

Description

Fluxgate sensors are magnetic field sensors that can measure DC and low frequency AC magnetic fields. They can measure much lower magnetic fields than other magnetic sensors like Hall effect sensors, magnetoresistive sensors etc. They also have high linearity, high

Fluxgate sensors are magnetic field sensors that can measure DC and low frequency AC magnetic fields. They can measure much lower magnetic fields than other magnetic sensors like Hall effect sensors, magnetoresistive sensors etc. They also have high linearity, high sensitivity and low noise. The major application of fluxgate sensors is in magnetometers for the measurement of earth's magnetic field. Magnetometers are used in navigation systems and electronic compasses. Fluxgate sensors can also be used to measure high DC currents. Integrated micro-fluxgate sensors have been developed in recent years. These sensors have much lower power consumption and area compared to their PCB counterparts. The output voltage of micro-fluxgate sensors is very low which makes the analog front end more complex and results in an increase in power consumption of the system. In this thesis a new analog front-end circuit for micro-fluxgate sensors is developed. This analog front-end circuit uses charge pump based excitation circuit and phase delay based read-out chain. With these two features the power consumption of analog front-end is reduced. The output is digital and it is immune to amplitude noise at the output of the sensor. Digital output is produced without using an ADC. A SPICE model of micro-fluxgate sensor is used to verify the operation of the analog front-end and the simulation results show very good linearity.

Contributors

Agent

Created

Date Created
2013

152321-Thumbnail Image.png

Error detection and error correction for PMU data as applied to power system state estimators

Description

In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the

In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real time model for market operations and other critical analysis functions in the EMS. Tradi-tionally, SE is run with data obtained only from supervisory control and data acquisition (SCADA) devices and systems. However, more emphasis on improving the performance of SE drives the inclusion of phasor measurement units (PMUs) into SE input data. PMU measurements are claimed to be more accurate than conventional measurements and PMUs `time stamp' measurements accurately. These widely distributed devices meas-ure the voltage phasors directly. That is, phase information for measured voltages and currents are available. PMUs provide data time stamps to synchronize measurements. Con-sidering the relatively small number of PMUs installed in contemporary power systems in North America, performing SE with only phasor measurements is not feasible. Thus a hy-brid SE, including both SCADA and PMU measurements, is the reality for contemporary power system SE. The hybrid approach is the focus of a number of research papers. There are many practical challenges in incorporating PMUs into SE input data. The higher reporting rates of PMUs as compared with SCADA measurements is one of the salient problems. The disparity of reporting rates raises a question whether buffering the phasor measurements helps to give better estimates of the states. The research presented in this thesis addresses the design of data buffers for PMU data as used in SE applications in electric power systems. The system theoretic analysis is illustrated using an operating electric power system in the southwest part of the USA. Var-ious instances of state estimation data have been used for analysis purposes. The details of the research, results obtained and conclusions drawn are presented in this document.

Contributors

Agent

Created

Date Created
2013

152326-Thumbnail Image.png

Concentrated solar power generation

Description

Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a method to concentrate the sunlight from a bigger area to a smaller area. The collected

Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a method to concentrate the sunlight from a bigger area to a smaller area. The collected sunlight is converted more efficiently through two types of technologies: concentrated solar photovoltaics (CSPV) and concentrated solar thermal power (CSTP) generation. In this thesis, these two technologies were evaluated in terms of system construction, performance characteristics, design considerations, cost benefit analysis and their field experience. The two concentrated solar power generation systems were implemented with similar solar concentrators and solar tracking systems but with different energy collecting and conversion components: the CSPV system uses high efficiency multi-junction solar cell modules, while the CSTP system uses a boiler -turbine-generator setup. The performances are calibrated via the experiments and evaluation analysis.

Contributors

Agent

Created

Date Created
2013

152331-Thumbnail Image.png

Design of a twelve bit, four hundred mega-samples-per-second, interpolating dual channel digital to analog converter featuring digital modulation

Description

Digital to analog converters (DACs) find widespread use in communications equipment. Most commercially available DAC's which are intended to be used in transmitter applications come in a dual configuration for carrying the in phase (I) and quadrature (Q) data and

Digital to analog converters (DACs) find widespread use in communications equipment. Most commercially available DAC's which are intended to be used in transmitter applications come in a dual configuration for carrying the in phase (I) and quadrature (Q) data and feature on chip digital mixing. Digital mixing offers many benefits concerning I and Q matching but has one major drawback; the update rate of the DAC must be higher than the intermediate frequency (IF) which is most commonly a factor of 4. This drawback motivates the need for interpolation so that a low update rate can be used for components preceding the DACs. In this thesis the design of an interpolating DAC integrated circuit (IC) to be used in a transmitter application for generating a 100MHz IF is presented. Many of the transistor level implementations are provided. The tradeoffs in the design are analyzed and various options are discussed. This thesis provides a basic foundation for designing an IC of this nature and will give the reader insight into potential areas of further research. At the time of this writing the chip is in fabrication therefore this document does not contain test results.

Contributors

Agent

Created

Date Created
2013

151804-Thumbnail Image.png

Evaluation and characterization of Silicon MESFETs in low dropout regulators

Description

The partially-depleted (PD) silicon Metal Semiconductor Field Effect Transistor (MESFET) is becoming more and more attractive for analog and RF applications due to its high breakdown voltage. Compared to conventional CMOS high voltage transistors, the silicon MESFET can be fabricated

The partially-depleted (PD) silicon Metal Semiconductor Field Effect Transistor (MESFET) is becoming more and more attractive for analog and RF applications due to its high breakdown voltage. Compared to conventional CMOS high voltage transistors, the silicon MESFET can be fabricated in commercial standard Silicon-on-Insulator (SOI) CMOS foundries without any change to the process. The transition frequency of the device is demonstrated to be 45GHz, which makes the MESFET suitable for applications in high power RF power amplifier designs. Also, high breakdown voltage and low turn-on resistance make it the ideal choice for switches in the switching regulator designs. One of the anticipated applications of the MESFET is for the pass device for a low dropout linear regulator. Conventional NMOS and PMOS linear regulators suffer from high dropout voltage, low bandwidth and poor stability issues. In contrast, the N-MESFET pass transistor can provide an ultra-low dropout voltage and high bandwidth without the need for an external compensation capacitor to ensure stability. In this thesis, the design theory and problems of the conventional linear regulators are discussed. N-MESFET low dropout regulators are evaluated and characterized. The error amplifier used a folded cascode architecture with gain boosting. The source follower topology is utilized as the buffer to sink the gate leakage current from the MESFET. A shunt-feedback transistor is added to reduce the output impedance and provide the current adaptively. Measurement results show that the dropout voltage is less than 150 mV for a 1A load current at 1.8V output. Radiation measurements were done for discrete MESFET and fully integrated LDO regulators, which demonstrate their radiation tolerance ability for aerospace applications.

Contributors

Agent

Created

Date Created
2013

152376-Thumbnail Image.png

Electric potential and field calculation of HVDC composite insulators by charge simulation method

Description

High Voltage Direct Current (HVDC) technology is being considered for several long distance point-to-point overhead transmission lines, because of their lower losses and higher transmission capability, when compared to AC systems. Insulators are used to support and isolate the conductors

High Voltage Direct Current (HVDC) technology is being considered for several long distance point-to-point overhead transmission lines, because of their lower losses and higher transmission capability, when compared to AC systems. Insulators are used to support and isolate the conductors mechanically and electrically. Composite insulators are gaining popularity for both AC and DC lines, for the reasons of light weight and good performance under contaminated conditions. This research illustrates the electric potential and field computation on HVDC composite insulators by using the charge simulation method. The electric field is calculated under both dry and wet conditions. Under dry conditions, the field distributions along the insulators whose voltage levels range from 500 kV to 1200 kV are calculated and compared. The results indicate that the HVDC insulator produces higher electric field, when compared to AC insulator. Under wet conditions, a 500 kV insulator is modeled with discrete water droplets on the surface. In this case, the field distribution is affected by surface resistivity and separations between droplets. The corona effects on insulators are analyzed for both dry and wet conditions. Corona discharge is created, when electric field strength exceeds the threshold value. Corona and grading rings are placed near the end-fittings of the insulators to reduce occurrence of corona. The dimensions of these rings, specifically their radius, tube thickness and projection from end fittings are optimized. This will help the utilities design proper corona and grading rings to reduce the corona phenomena.

Contributors

Agent

Created

Date Created
2013

152259-Thumbnail Image.png

Design of a digitally controlled pulse width modulator for DC-DC converter applications

Description

Synchronous buck converters have become the obvious choice of design for high efficiency voltage down-conversion applications and find wide scale usage in today's IC industry. The use of digital control in synchronous buck converters is becoming increasingly popular because of

Synchronous buck converters have become the obvious choice of design for high efficiency voltage down-conversion applications and find wide scale usage in today's IC industry. The use of digital control in synchronous buck converters is becoming increasingly popular because of its associated advantages over traditional analog counterparts in terms of design flexibility, reduced use of off-chip components, and better programmability to enable advanced controls. They also demonstrate better immunity to noise, enhances tolerance to the process, voltage and temperature (PVT) variations, low chip area and as a result low cost. It enables processing in digital domain requiring a need of analog-digital interfacing circuit viz. Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC). A Digital to Pulse Width Modulator (DPWM) acts as time domain DAC required in the control loop to modulate the ON time of the Power-MOSFETs. The accuracy and efficiency of the DPWM creates the upper limit to the steady state voltage ripple of the DC - DC converter and efficiency in low load conditions. This thesis discusses the prevalent architectures for DPWM in switched mode DC - DC converters. The design of a Hybrid DPWM is presented. The DPWM is 9-bit accurate and is targeted for a Synchronous Buck Converter with a switching frequency of 1.0 MHz. The design supports low power mode(s) for the buck converter in the Pulse Frequency Modulation (PFM) mode as well as other fail-safe features. The design implementation is digital centric making it robust across PVT variations and portable to lower technology nodes. Key target of the design is to reduce design time. The design is tested across large Process (+/- 3σ), Voltage (1.8V +/- 10%) and Temperature (-55.0 °C to 125 °C) and is in the process of tape-out.

Contributors

Agent

Created

Date Created
2013