Matching Items (71)
Filtering by

Clear all filters

153057-Thumbnail Image.png
Description
Due to increasing integration of renewable resources in the power grid, an efficient high power transmission system is needed in the near future to transfer energy from remote locations to the load centers. Gas Insulated Transmission Line (GIL) is a specialized high power transmission system, designed by Siemens, for applications

Due to increasing integration of renewable resources in the power grid, an efficient high power transmission system is needed in the near future to transfer energy from remote locations to the load centers. Gas Insulated Transmission Line (GIL) is a specialized high power transmission system, designed by Siemens, for applications requiring direct burial or vertical installation of the transmission line. GIL uses SF6 as an insulating medium. Due to unavoidable gas leakages and high global warming potential of SF6, there is a need to replace this insulating gas by some other possible alternative. Insulating foam materials are characterized by excellent dielectric properties as well as their reduced weight. These materials can find their application in GIL as high voltage insulators. Syntactic foam is a polymer based insulating foam. It consists of a large number of microspheres embedded in a polymer matrix.

The work in this thesis deals with the development of the selection proce-dure for an insulating foam for its application in GIL. All the steps in the process are demonstrated considering syntactic foam as an insulator. As the first step of the procedure, a small representative model of the insulating foam is built in COMSOL Multiphysics software with the help of AutoCAD and Excel VBA to analyze electric field distribution for the application of GIL. The effect of the presence of metal particles on the electric field distribution is also observed. The AC voltage withstand test is performed on the insulating foam samples according to the IEEE standards. The effect of the insulating foam on electrical parameters as well as transmission characteristics of the line is analyzed as the last part of the thesis. The results from all the simulations and AC voltage withstand test are ob-served to predict the suitability of the syntactic foam as an insulator in GIL.
ContributorsPendse, Harshada Ganesh (Author) / Karady, George G. (Thesis advisor) / Holbert, Keith E. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014
153066-Thumbnail Image.png
Description
There has been a considerable growth in distributed photovoltaic (PV) genera-tion and its integration in electric power distribution systems. This has led to a change in the distribution system infrastructure. Properly planned distributed gen-eration can offer a variety of benefits for system operations and enhance opera-tional performance of the distribution

There has been a considerable growth in distributed photovoltaic (PV) genera-tion and its integration in electric power distribution systems. This has led to a change in the distribution system infrastructure. Properly planned distributed gen-eration can offer a variety of benefits for system operations and enhance opera-tional performance of the distribution system. However, high penetration of PV resources can give rise to operating conditions which do not arise in traditional systems and one of the potential issues that needs to be addressed involves impact on power quality of the system with respect to the spectral distortion in voltages and currents.

The test bed feeder model representing a real operational distribution feeder is developed in OpenDSS and the feeder modeling takes into consideration the ob-jective of analysis and frequency of interest. Extensive metering infrastructure and measurements are utilized for validation of the model at harmonic frequencies. The harmonic study performed is divided into two sections: study of impact of non-linear loads on total harmonic voltage and current distortions and study of impact of PV resources on high frequency spectral distortion in voltages and cur-rents. The research work incorporates different harmonic study methodologies such as harmonic and high frequency power flow, and frequency scan study. The general conclusions are presented based on the simulation results and in addition, scope for future work is discussed.
ContributorsJoshi, Titiksha Vjay (Author) / Heydt, Gerald T (Thesis advisor) / Ayyanar, Raja (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2014
153113-Thumbnail Image.png
Description
As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC

As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC converter is connected to the output of each PV module. The DC optimizer architecture has the advantage of performing maximum power-point tracking (MPPT) at the module level, without the high cost of using an inverter on each module (the "microinverter" architecture). This work details the design of a proposed DC optimizer. The design incorporates a series-input parallel-output topology to implement MPPT at the sub-module level. This topology has some advantages over the more common series-output DC optimizer, including relaxed requirements for the system's inverter. An autonomous control scheme is proposed for the series-connected converters, so that no external control signals are needed for the system to operate, other than sunlight. The DC optimizer in this work is designed with an emphasis on efficiency, and to that end it uses GaN FETs and an active clamp technique to reduce switching and conduction losses. As with any parallel-output converter, phase interleaving is essential to minimize output RMS current losses. This work proposes a novel phase-locked loop (PLL) technique to achieve interleaving among the series-input converters.
ContributorsLuster, Daniel (Author) / Ayyanar, Raja (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2014
153117-Thumbnail Image.png
Description
The safety issue in an electrical power distribution system is of critical importance. In some circumstances, even the continuity of service has to be compromised for a situation that can cause a hazard to the public. A downed conductor that creates an electrical path between a current carrying conductor and

The safety issue in an electrical power distribution system is of critical importance. In some circumstances, even the continuity of service has to be compromised for a situation that can cause a hazard to the public. A downed conductor that creates an electrical path between a current carrying conductor and ground pose a potential lethal hazard to anyone in the near proximity. Electric utilities have yet to find a fully accepted and reliable method for detecting downed conductors even with decades of research.

With the entry of more automation and a smarter grid in the different layers of distribution power system supply, new doors are being opened and new feasible solutions are waiting to be explored. The 'big data' and the infrastructures that are readily accessible through the smart metering system is the base of the work and analysis performed in this thesis. In effect, the new technologies and new solutions are an artifact of the Smart Grid effort which has now reached worldwide dimensions. A solution to problems of overhead distribution conductor failures / faults that use simple methods and that are easy to implement using existing and future distribution management systems is presented.

A European type distribution system using three phase supply is utilized as the test bed for the concepts presented. Fault analysis is performed on the primary and the secondary distribution system using the free downloadable software OpenDSS. The outcome is a set of rules that can be implemented either locally or central using a voltage based method. Utilized in the distribution management systems the operators will be given a powerful tool to make the correct action when a situation occurs. The test bed itself is taken from an actual system in Norway.
ContributorsAbusdal, Geir Magne (Author) / Heydt, Gerald T (Thesis advisor) / Ayyanar, Raja (Committee member) / Heydt, George (Committee member) / Arizona State University (Publisher)
Created2014
153274-Thumbnail Image.png
Description
Scarcity of potable water is one of the major problems faced in the world today. Majority of this problem can be solved if technology is developed to obtain potable water from brackish or saline water. The present desalination methods face challenges such as high costs in terms of energy consumption

Scarcity of potable water is one of the major problems faced in the world today. Majority of this problem can be solved if technology is developed to obtain potable water from brackish or saline water. The present desalination methods face challenges such as high costs in terms of energy consumption and infrastructure, physical size of the system, requirement of membrane and high pressure systems and hence have been facing various issues in implementation of the same.

This research provides a new low pressure, low energy, portable method to desalinate water without the need for separation membranes, heat or chemical reactions. This method is energy efficient, cost effective, compact, environment friendly and suitable for portable desalination units. This technology, named as Polyphase Alternating current Bi-Ionic Propulsion System (PACBIPS) makes use of polyphase alternating current source to create a gradient in salt concentration. The gradient in salt concentration is achieved due to the creation of a traveling wave which attracts anions on its positive peak (crests) and cations on its negative peak (troughs) and travels along a central pipe thereby flushing the ions down.

Another method of PACBIPS is based on Helmholtz capacitor which involves the formation of an electric double layer between the electrode and electrolyte consisting of equal and opposite ions which can be approximated as a capacitor. Charging and discharging this capacitor helps adsorb the ions onto a carbon electrode which has high surface area and electrical conductivity. This desalinates seawater and provides pure water. Mathematical modeling, analysis and implementation of the two methods have

been presented in this work. The effects of zeta potential, electric field screening, electric mobility on desalination have been discussed.
ContributorsKrishna Kashyap, Suhas (Author) / Hui, Joseph (Thesis advisor) / Ayyanar, Raja (Committee member) / Rodriguez, Armando A (Committee member) / Arizona State University (Publisher)
Created2014
153289-Thumbnail Image.png
Description
Substation ground system insures safety of personnel, which deserves considerable attentions. Basic substation safety requirement quantities include ground grid resistance, mesh touch potential and step potential, moreover, optimal design of a substation ground system should include both safety concerns and ground grid construction cost. In the purpose of optimal designing

Substation ground system insures safety of personnel, which deserves considerable attentions. Basic substation safety requirement quantities include ground grid resistance, mesh touch potential and step potential, moreover, optimal design of a substation ground system should include both safety concerns and ground grid construction cost. In the purpose of optimal designing the ground grid in the accurate and efficient way, an application package coded in MATLAB is developed and its core algorithm and main features are introduced in this work.

To ensure accuracy and personnel safety, a two-layer soil model is applied instead of the uniform soil model in this research. Some soil model parameters are needed for the two-layer soil model, namely upper-layer resistivity, lower-layer resistivity and upper-layer thickness. Since the ground grid safety requirement is considered under the earth fault, the value of fault current and fault duration time are also needed.

After all these parameters are obtained, a Resistance Matrix method is applied to calculate the mutual and self resistance between conductor segments on both the horizontal and vertical direction. By using a matrix equation of the relationship of mutual and self resistance and unit current of the conductor segments, the ground grid rise can be calculated. Green's functions are applied to calculate the earth potential at a certain point produced by horizontal or vertical line of current. Furthermore, the three basic ground grid safety requirement quantities: the mesh touch potential in the worst case point can be obtained from the earth potential and ground grid rise; the step potential can be obtained from two points' earth potential difference; the grid resistance can be obtained from ground grid rise and fault current.

Finally, in order to achieve ground grid optimization problem more accurate and efficient, which includes the number of meshes in the horizontal grid and the number of vertical rods, a novel two-step hybrid genetic algorithm-pattern search (GA-PS) optimization method is developed. The Genetic Algorithm (GA) is used first to search for an approximate starting point, which is used by the Pattern Search (PS) algorithm to find the final optimal result. This developed application provides an optimal grid design meeting all safety constraints. In the cause of the accuracy of the application, the touch potential, step potential, ground potential rise and grid resistance are compared with these produced by the industry standard application WinIGS and some theoretical ground grid model.

In summary, the developed application can solve the ground grid optimization problem with the accurate ground grid modeling method and a hybrid two-step optimization method.
ContributorsZhang, Qianzhi (Author) / Tylavsky, Daniel (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014
150130-Thumbnail Image.png
Description
All-dielectric self-supporting (ADSS) fiber optic cables are used for data transfer by the utilities. They are installed along high voltage transmission lines. Dry band arcing, a phenomenon which is observed in outdoor insulators, is also observed in ADSS cables. The heat developed during dry band arcing damages the ADSS cables'

All-dielectric self-supporting (ADSS) fiber optic cables are used for data transfer by the utilities. They are installed along high voltage transmission lines. Dry band arcing, a phenomenon which is observed in outdoor insulators, is also observed in ADSS cables. The heat developed during dry band arcing damages the ADSS cables' outer sheath. A method is presented here to rate the cable sheath using the power developed during dry band arcing. Because of the small diameter of ADSS cables, mechanical vibration is induced in ADSS cable. In order to avoid damage, vibration dampers known as spiral vibration dampers (SVD) are used over these ADSS cables. These dampers are installed near the armor rods, where the presence of leakage current and dry band activity is more. The effect of dampers on dry band activity is investigated by conducting experiments on ADSS cable and dampers. Observations made from the experiments suggest that the hydrophobicity of the cable and damper play a key role in stabilizing dry band arcs. Hydrophobic-ity of the samples have been compared. The importance of hydrophobicity of the samples is further illustrated with the help of simulation results. The results indi-cate that the electric field increases at the edges of water strip. The dry band arc-ing phenomenon could thus be correlated to the hydrophobicity of the outer sur-face of cable and damper.
ContributorsPrabakar, Kumaraguru (Author) / Karady, George G. (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
149932-Thumbnail Image.png
Description
Recent changes in the energy markets structure combined with the conti-nuous load growth have caused power systems to be operated under more stressed conditions. In addition, the nature of power systems has also grown more complex and dynamic because of the increasing use of long inter-area tie-lines and the high

Recent changes in the energy markets structure combined with the conti-nuous load growth have caused power systems to be operated under more stressed conditions. In addition, the nature of power systems has also grown more complex and dynamic because of the increasing use of long inter-area tie-lines and the high motor loads especially those comprised mainly of residential single phase A/C motors. Therefore, delayed voltage recovery, fast voltage collapse and short term voltage stability issues in general have obtained significant importance in relia-bility studies. Shunt VAr injection has been used as a countermeasure for voltage instability. However, the dynamic and fast nature of short term voltage instability requires fast and sufficient VAr injection, and therefore dynamic VAr devices such as Static VAr Compensators (SVCs) and STATic COMpensators (STAT-COMs) are used. The location and size of such devices are optimized in order to improve their efficiency and reduce initial costs. In this work time domain dy-namic analysis was used to evaluate trajectory voltage sensitivities for each time step. Linear programming was then performed to determine the optimal amount of required VAr injection at each bus, using voltage sensitivities as weighting factors. Optimal VAr injection values from different operating conditions were weighted and averaged in order to obtain a final setting of the VAr requirement. Some buses under consideration were either assigned very small VAr injection values, or not assigned any value at all. Therefore, the approach used in this work was found to be useful in not only determining the optimal size of SVCs, but also their location.
ContributorsSalloum, Ahmed (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
150615-Thumbnail Image.png
Description
This thesis concerns the impact of energy storage on the power system. The rapidly increasing integration of renewable energy source into the grid is driving greater attention towards electrical energy storage systems which can serve many applications like economically meeting peak loads, providing spinning reserve. Economic dispatch is performed with

This thesis concerns the impact of energy storage on the power system. The rapidly increasing integration of renewable energy source into the grid is driving greater attention towards electrical energy storage systems which can serve many applications like economically meeting peak loads, providing spinning reserve. Economic dispatch is performed with bulk energy storage with wind energy penetration in power systems allocating the generation levels to the units in the mix, so that the system load is served and most economically. The results obtained in previous research to solve for economic dispatch uses a linear cost function for a Direct Current Optimal Power Flow (DCOPF). This thesis uses quadratic cost function for a DCOPF implementing quadratic programming (QP) to minimize the function. A Matlab program was created to simulate different test systems including an equivalent section of the WECC system, namely for Arizo-na, summer peak 2009. A mathematical formulation of a strategy of when to charge or discharge the storage is incorporated in the algorithm. In this thesis various test cases are shown in a small three bus test bed and also for the state of Arizona test bed. The main conclusions drawn from the two test beds is that the use of energy storage minimizes the generation dispatch cost of the system and benefits the power sys-tem by serving the peak partially from stored energy. It is also found that use of energy storage systems may alleviate the loading on transmission lines which can defer the upgrade and expansion of the transmission system.
ContributorsGupta, Samir (Author) / Heydt, Gerald T (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2012
150059-Thumbnail Image.png
Description
Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing

Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing the maximum dynamic loading rating can increase utilization of the transformer while not reducing life-expectancy, delaying the replacement of the transformer. This document presents the progress on the transformer dynamic loading project sponsored by Salt River Project (SRP). A software application which performs dynamic loading for substation distribution transformers with appropriate transformer thermal models is developed in this project. Two kinds of thermal hottest-spot temperature (HST) and top-oil temperature (TOT) models that will be used in the application--the ASU HST/TOT models and the ANSI models--are presented. Brief validations of the ASU models are presented, showing that the ASU models are accurate in simulating the thermal processes of the transformers. For this production grade application, both the ANSI and the ASU models are built and tested to select the most appropriate models to be used in the dynamic loading calculations. An existing application to build and select the TOT model was used as a starting point for the enhancements developed in this work. These enhancements include:  Adding the ability to develop HST models to the existing application,  Adding metrics to evaluate the models accuracy and selecting which model will be used in dynamic loading calculation  Adding the capability to perform dynamic loading calculations,  Production of a maximum dynamic load profile that the transformer can tolerate without acceleration of the insulation aging,  Provide suitable output (plots and text) for the results of the dynamic loading calculation. Other challenges discussed include: modification to the input data format, data-quality control, cooling mode estimation. Efforts to overcome these challenges are discussed in this work.
ContributorsLiu, Yi (Author) / Tylavksy, Daniel J (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011