Matching Items (6)
Filtering by

Clear all filters

Description
The ability to tolerate bouts of oxygen deprivation varies tremendously across the animal kingdom. Adult humans from different regions show large variation in tolerance to hypoxia; additionally, it is widely known that neonatal mammals are much more tolerant to anoxia than their adult counterparts, including in humans. Drosophila melanogaster are

The ability to tolerate bouts of oxygen deprivation varies tremendously across the animal kingdom. Adult humans from different regions show large variation in tolerance to hypoxia; additionally, it is widely known that neonatal mammals are much more tolerant to anoxia than their adult counterparts, including in humans. Drosophila melanogaster are very anoxia-tolerant relative to mammals, with adults able to survive 12 h of anoxia, and represent a well-suited model for studying anoxia tolerance. Drosophila live in rotting, fermenting media and a result are more likely to experience environmental hypoxia; therefore, they could be expected to be more tolerant of anoxia than adults. However, adults have the capacity to survive anoxic exposure times ~8 times longer than larvae. This dissertation focuses on understanding the mechanisms responsible for variation in survival from anoxic exposure in the genetic model organism, Drosophila melanogaster, focused in particular on effects of developmental stage (larval vs. adults) and within-population variation among individuals.

Vertebrate studies suggest that surviving anoxia requires the maintenance of ATP despite the loss of aerobic metabolism in a manner that prevents a disruption of ionic homeostasis. Instead, the abilities to maintain a hypometabolic state with low ATP and tolerate large disturbances in ionic status appear to contribute to the higher anoxia tolerance of adults. Furthermore, metabolomics experiments support this notion by showing that larvae had higher metabolic rates during the initial 30 min of anoxia and that protective metabolites were upregulated in adults but not larvae. Lastly, I investigated the genetic variation in anoxia tolerance using a genome wide association study (GWAS) to identify target genes associated with anoxia tolerance. Results from the GWAS also suggest mechanisms related to protection from ionic and oxidative stress, in addition to a protective role for immune function.
ContributorsCampbell, Jacob B (Author) / Harrison, Jon F. (Thesis advisor) / Gadau, Juergen (Committee member) / Call, Gerald B (Committee member) / Sweazea, Karen L (Committee member) / Rosenberg, Michael S. (Committee member) / Arizona State University (Publisher)
Created2018
157201-Thumbnail Image.png
Description
The prevalence of obesity and obesity-related disorders have increased world-wide. In the last decade, the intestinal microbiome has become a major indicator of metabolic and gastrointestinal health. Previous research has shown that high-fat diet (HFD) consumption can alter the microbial composition of the gut by increasing the abundance of gram-positive

The prevalence of obesity and obesity-related disorders have increased world-wide. In the last decade, the intestinal microbiome has become a major indicator of metabolic and gastrointestinal health. Previous research has shown that high-fat diet (HFD) consumption can alter the microbial composition of the gut by increasing the abundance of gram-positive bacteria associated with the onset of obesity and type 2 diabetes. Although, the most common form of obesity and metabolic syndrome intervention is exercise and diet, these recommendations may not improve severe cases of obesity. Thus, an important relevance of my project was to investigate whether the intake of an organometallic complex (OMC) would prevent the onset of metabolic and gastrointestinal complications associated with high-fat diet intake. I hypothesized that the consumption of a HFD for 6 weeks would promote the development of metabolic and gastrointestinal disease risk factors. Next, it was hypothesized that OMC treatment would decrease metabolic risk factors by improving insulin sensitivity and decreasing weight gain. Finally, I hypothesized that HFD-intake would increase the abundance of gram-positive bacteria associated with gastrointestinal disease. My preliminary data investigated the effects of a 6-week HFD on the development of hepatic steatosis, intestinal permeability and inflammation in male Sprague Dawley rats. I found that a 6-week HFD increases hepatic triglyceride concentrations, plasma endotoxins and promotes the production of pro-inflammatory cytokines in the cecum wall. I then investigated whether OMC treatment could prevent metabolic risk factors in male Sprague-Dawley rats fed a HFD for 10 weeks and found that OMC can mitigate risk factors such hyperglycemia, liver disease, impaired endothelial function, and inflammation. Lastly, I investigated the effects of a 10-week HFD on the gastrointestinal system and found an increase in liver triglycerides and free glycerol and alterations of the distal gut microbiome. My results support the hypothesis that a HFD can promote metabolic risk factors, alter the gut microbiome and increase systemic inflammation and that OMC treatment may help mitigate some of these effects. Together, these studies are among the first to demonstrate the effects of a soil-derived compound on metabolic complications. Additionally, these conclusions also provide an essential basis for future gastrointestinal and microbiome studies of OMC treatment.
ContributorsCrawford, Meli'sa Shaunte (Author) / Sweazea, Karen L (Thesis advisor) / Deviche, Pierre (Thesis advisor) / Al-Nakkash, Layla (Committee member) / Whisner, Corrie (Committee member) / Hyatt, Jon-Philippe (Committee member) / Arizona State University (Publisher)
Created2019
153771-Thumbnail Image.png
Description
Background: Despite the reported improvements in glucose regulation associated with flaxseeds (Linum usitatissimum) few clinical trials have been conducted in diabetic participants. Objective: To evaluate the efficacy of ground flaxseed consumption at attenuating hyperglycemia, dyslipidemia, inflammation, and oxidative stress as compared to a control in adults with non-insulin dependent type

Background: Despite the reported improvements in glucose regulation associated with flaxseeds (Linum usitatissimum) few clinical trials have been conducted in diabetic participants. Objective: To evaluate the efficacy of ground flaxseed consumption at attenuating hyperglycemia, dyslipidemia, inflammation, and oxidative stress as compared to a control in adults with non-insulin dependent type 2 diabetes (T2D). Design: In a randomized parallel arm controlled efficacy trial, participants were asked to consume either 28 g/d ground flaxseed or the fiber-matched control (9 g/d ground psyllium husk) for 8 weeks. The study included 17 adults (9 male, 8 females; 46±14 y; BMI: 31.4±5.7 kg/m2) with a diagnosis of T2D ≥ 6 months. Main outcomes measured included: glycemic control (HbA1c, fasting plasma glucose, fasting serum insulin, and HOMA-IR), lipid profile (total cholesterol, LDL-C, HDL-C, total triglycerides, and calculated VLDL-C), markers of inflammation and oxidative stress (TNF-alpha, TBARS, and NOx), and dietary intake (energy, total fat, total fiber, sodium). Absolute net change for measured variables (week 8 values minus baseline values) were compared using Mann-Whitney U non-parametric tests, significance was determined at p ≤ 0.05. Results: There were no significant changes between groups from baseline to week 8 in any outcome measure of nutrient intake, body composition, glucose control, or lipid concentrations. There was a modest decrease in TNF-alpha in the flaxseed group as compared to the control (p = 0.06) as well as a mild decrease in TBARS in the flaxseed as compared to the control group (p = 0.083), though neither were significant. Conclusions: The current study did not detect a measurable association between 28 g/d flaxseed consumption for 8 weeks in T2D participants and improvements in glycemic control or lipid profiles. There was a modest, albeit insignificant, decrease in markers of inflammation and oxidative stress in the flaxseed group as compared to the control, which warrants further study.
ContributorsRicklefs, Kristin (Author) / Sweazea, Karen L (Thesis advisor) / Johnston, Carol S (Committee member) / Gaesser, Glenn (Committee member) / Vega-Lopez, Sonia (Committee member) / Gonzales, Rayna (Committee member) / Arizona State University (Publisher)
Created2015
161799-Thumbnail Image.png
Description
The control, function, and evolution of sleep in animals has received little attention compared to many other fitness-relevant animal behaviors. Though natural selection has largely been thought of as the driving evolutionary force shaping sleep biology, sexual and social selection may also have transformative effects on sleep quantity and quality

The control, function, and evolution of sleep in animals has received little attention compared to many other fitness-relevant animal behaviors. Though natural selection has largely been thought of as the driving evolutionary force shaping sleep biology, sexual and social selection may also have transformative effects on sleep quantity and quality in animals. An overarching hypothesis is that increased levels of investment into inter-sexual choice and intra-sexual competition will reduce sleep. An alternative hypothesis is that sexual ornamentation (e.g. avian plumage coloration and song) may have evolved to communicate sleep health and may therefore be positively related to sleep investment. In this dissertation, I studied how sleep is related to components of sexual and social selection in animals (mostly in birds). I first reviewed the literature for empirical examples of how social and sexual selection drive animal sleep patterns and found support for this relationship in some common types of inter-individual interactions (e.g. mating, intra-sexual competition, parent-offspring interactions, group interactions); I also provided new ideas and hypotheses for future research. I then tested associations between sleep behavior with expression of ornaments (song and plumage coloration), using the house finch (Haemorhous mexicanus) as a model system. For both color and song, I found support for the hypothesis that individuals with exaggerated ornaments slept deeper and longer, suggesting that sleep is a critical resource for ornament elaboration and/or may be communicated by both types of sexual signal. Following this, I tested the phylogenetic association between sleep and social/sexual selection as well as other life-history traits across birds. I found that more territorial bird species sleep less, that polygynous birds sleep more than monogamous and polygynandrous birds, and that birds migrating longer distances sleep less and have less REM sleep. Finally, in the interest of applying basic knowledge about sleep biology to current global problems, I found support for the hypothesis that house finches from city environments have developed resilience to artificial light pollution at night. Altogether, I found that social, sexual, and life-history traits are indeed important and overlooked drivers of sleep behavior from multiple levels of analysis.
ContributorsHutton, Pierce (Author) / McGraw, Kevin J (Thesis advisor) / Rutowski, Ronald L (Committee member) / Deviche, Pierre J (Committee member) / Sweazea, Karen L (Committee member) / Lesku, John A (Committee member) / Arizona State University (Publisher)
Created2021
153650-Thumbnail Image.png
Description
Background: Postprandial hyperglycemia can increase levels of oxidative stress and is an independent risk factor for complications associated with type 2 diabetes.

Purpose: To evaluate the acute effects of a 15-min postmeal walk on glucose control and markers of oxidative stress following a high-carbohydrate meal.

Methods: Ten obese subjects (55.0 ± 10.0

Background: Postprandial hyperglycemia can increase levels of oxidative stress and is an independent risk factor for complications associated with type 2 diabetes.

Purpose: To evaluate the acute effects of a 15-min postmeal walk on glucose control and markers of oxidative stress following a high-carbohydrate meal.

Methods: Ten obese subjects (55.0 ± 10.0 yrs) with impaired fasting glucose (107.1 ± 9.0 mg/dL) participated in this repeated measures trial. Subjects arrived at the laboratory following an overnight fast and underwent one of three conditions: 1) Test meal with no walking or fiber (CON), 2) Test meal with 10g fiber and no walking (FIB), 3) Test meal with no fiber followed by a 15-min treadmill walk at preferred walking speed (WALK). Blood samples were taken over four hours and assayed for glucose, insulin, thiobarbituric reactive substances (TBARS), catalase, uric acid, and total antioxidant capacity (TAC). A repeated measures ANOVA was used to compare mean differences for all outcome variables.

Results: The 2hr and 4hr incremental area under the curve (iAUC) for glucose was lower in both FIB (2hr: -93.59 mmol∙120 min∙L-1, p = 0.006; 4hr: -92.59 mmol∙240 min∙L-1; p = 0.041) and WALK (2hr: -77.21 mmol∙120 min∙L-1, p = 0.002; 4hr: -102.94 mmol∙240 min∙L-1; p = 0.005) conditions respectively, compared with CON. There were no differences in 2hr or 4hr iAUC for glucose between FIB and WALK (2hr: p = 0.493; 4hr: p = 0.783). The 2hr iAUC for insulin was significantly lower in both FIB (-37.15 μU ∙h/mL; p = 0.021) and WALK (-66.35 μU ∙h/mL; p < 0.001) conditions, compared with CON, and was significantly lower in the WALK (-29.2 μU ∙h/mL; p = 0.049) condition, compared with FIB. The 4hr iAUC for insulin in the WALK condition was significantly lower than both CON (-104.51 μU ∙h/mL; p = 0.001) and FIB (-77.12 μU ∙h/mL; p = 0.006) conditions. Markers of oxidative stress were not significantly different between conditions.

Conclusion: A moderate 15-minute postmeal walk is an effective strategy to reduce postprandial hyperglycemia. However, it is unclear if this attenuation could lead to improvements in postprandial oxidative stress.
ContributorsKnurick, Jessica (Author) / Johnston, Carol S (Thesis advisor) / Sweazea, Karen L (Committee member) / Gaesser, Glenn A (Committee member) / Shaibi, Gabriel Q (Committee member) / Lee, Chong D (Committee member) / Arizona State University (Publisher)
Created2015
168785-Thumbnail Image.png
Description
Birds have the highest blood glucose concentrations of all vertebrates. Meanwhile, birds do not develop the same physiological complications (e.g., increased oxidative stress and glycation) that mammals do when blood glucose is elevated (i.e., diabetes). Therefore, birds may serve as a negative model animal for hyperglycemic complications. The physiological reason

Birds have the highest blood glucose concentrations of all vertebrates. Meanwhile, birds do not develop the same physiological complications (e.g., increased oxidative stress and glycation) that mammals do when blood glucose is elevated (i.e., diabetes). Therefore, birds may serve as a negative model animal for hyperglycemic complications. The physiological reason for high blood glucose in birds remains largely unknown although several unique characteristics of birds may contribute including a lack of the insulin responsive glucose transport protein, relatively high glucagon concentrations, as well as reliance on fatty acids to sustain the high energetic demands of flight. In breaking down triglycerides for energy, glycerol is liberated, which can be converted to glucose through a process called gluconeogenesis. In addition, the extent to which birds maintain homeostatic control over blood glucose in response to extreme dietary interventions remains unclear and few dietary studies have been conducted in wild-caught birds. Using Mourning Doves (Zenaida macroura) as a model organism, this dissertation tests four hypotheses: 1) Gluconeogenesis contributes to high circulating blood glucose concentration; 2-4) similar to mammals, a fully refined carbohydrate (i.e., white bread diet); a high saturated fat diet (60% kcal from fat); and an urban-type diet comprised of a 1:1 ratio of French fries and birds seed will increase blood glucose compared to a nutritionally-balanced diet after a four-week duration. Contrary to the hypothesis, 150 mg/kg Metformin (which inhibits glycerol gluconeogenesis) increased blood glucose, but 300 mg/kg resulted in no change. However, when 2.5 mg/kg of 1,4-dideoxy-1,4-imino-D-arabinitol (DAB; a glycogenolysis inhibitor) was given with 150 mg/kg of Metformin, blood glucose was not different from the control (50 ul water). This suggests that glycerol gluconeogenesis does not contribute to the naturally high blood glucose in birds and that a low dose of Metformin may increase the rate of glycogenolysis. In addition, all three experimental diets failed to alter blood glucose compared to control diets. Collectively, these results suggest that, in addition to a negative model for diabetes complications, birds can also serve a negative model for diet-induced hyperglycemia. Future research should further examine dietary manipulation in birds while controlling for and examining different variables (e.g., species, sex, duration, diet composition, urbanization).
ContributorsBasile, Anthony Joseph (Author) / Sweazea, Karen L (Thesis advisor) / Deviche, Pierre (Committee member) / Johnston, Carol (Committee member) / Trumble, Ben (Committee member) / Parrington, Diane J (Committee member) / Arizona State University (Publisher)
Created2022