Matching Items (11)
Filtering by

Clear all filters

152591-Thumbnail Image.png
Description
The explicit role of soil organisms in shaping soil health, rates of pedogenesis, and resistance to erosion has only just recently begun to be explored in the last century. However, much of the research regarding soil biota and soil processes is centered on maintaining soil fertility (e.g., plant nutrient availability)

The explicit role of soil organisms in shaping soil health, rates of pedogenesis, and resistance to erosion has only just recently begun to be explored in the last century. However, much of the research regarding soil biota and soil processes is centered on maintaining soil fertility (e.g., plant nutrient availability) and soil structure in mesic- and agro- ecosystems. Despite the empirical and theoretical strides made in soil ecology over the last few decades, questions regarding ecosystem function and soil processes remain, especially for arid areas. Arid areas have unique ecosystem biogeochemistry, decomposition processes, and soil microbial responses to moisture inputs that deviate from predictions derived using data generated in more mesic systems. For example, current paradigm predicts that soil microbes will respond positively to increasing moisture inputs in a water-limited environment, yet data collected in arid regions are not congruent with this hypothesis. The influence of abiotic factors on litter decomposition rates (e.g., photodegradation), litter quality and availability, soil moisture pulse size, and resulting feedbacks on detrital food web structure must be explicitly considered for advancing our understanding of arid land ecology. However, empirical data coupling arid belowground food webs and ecosystem processes are lacking. My dissertation explores the resource controls (soil organic matter and soil moisture) on food web network structure, size, and presence/absence of expected belowground trophic groups across a variety of sites in Arizona.
ContributorsWyant, Karl Arthur (Author) / Sabo, John L (Thesis advisor) / Elser, James J (Committee member) / Childers, Daniel L. (Committee member) / Hall, Sharon J (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2014
150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
150967-Thumbnail Image.png
Description
Colorful ornaments in animals often serve as sexually selected signals of quality. While pigment-based colors are well-studied in these regards, structural colors that result from the interaction of light with photonic nanostructures are comparatively understudied in terms of their consequences in social contexts, their costs of production, and even the

Colorful ornaments in animals often serve as sexually selected signals of quality. While pigment-based colors are well-studied in these regards, structural colors that result from the interaction of light with photonic nanostructures are comparatively understudied in terms of their consequences in social contexts, their costs of production, and even the best way to measure them. Iridescent colors are some of the most brilliant and conspicuous colors in nature, and I studied the measurement, condition-dependence, and signaling role of iridescence in Anna's hummingbirds (Calypte anna). While most animal colors are easily quantified using well-established spectrophotometric techniques, the unique characteristics of iridescent colors present challenges to measurement and opportunities to quantify novel color metrics. I designed and tested an apparatus for careful control and measurement of viewing geometry and highly repeatable measurements. These measurements could be used to accurately characterize individual variation in iridescent Anna's hummingbirds to examine their condition-dependence and signaling role. Next, I examined the literature published to date for evidence of condition-dependence of structural colors in birds. Using meta-analyses, I found that structural colors of all three types - white, ultra-violet/blue, and iridescence - are significantly condition-dependent, meaning that they can convey information about quality to conspecifics. I then investigated whether iridescent colors were condition-dependent in Anna's hummingbirds both in a field correlational study and in an experimental study. Throughout the year, I found that iridescent feathers in both male and female Anna's hummingbirds become less brilliant as they age. Color was not correlated with body condition in any age/sex group. However, iridescent coloration in male Anna's hummingbirds was significantly affected by experimental protein in the diet during feather growth, indicating that iridescent color may signal diet quality. Finally, I examined how iridescent colors were used to mediate social competitions in male and female Anna's hummingbirds. Surprisingly, males that were less colorful won significantly more contests than more colorful males, and colorful males received more aggression. Less colorful males may be attempting to drive away colorful neighbors that may be preferred mates. Female iridescent ornament size and color was highly variable, but did not influence contest outcomes or aggression.
ContributorsMeadows, Melissa (Author) / McGraw, Kevin J. (Thesis advisor) / Rutowski, Ronald L (Committee member) / Sabo, John L (Committee member) / Alcock, John (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2012
155241-Thumbnail Image.png
Description
Primary production in aquatic ecosystems is often limited by the availability of nitrogen (N) and/or phosphorus (P). Animals can substantially alter the relative availability of these nutrients by storing and recycling them in differential ratios. Variation in these stoichiometric traits, i.e., the elemental phenotype, within a species can link organismal

Primary production in aquatic ecosystems is often limited by the availability of nitrogen (N) and/or phosphorus (P). Animals can substantially alter the relative availability of these nutrients by storing and recycling them in differential ratios. Variation in these stoichiometric traits, i.e., the elemental phenotype, within a species can link organismal evolution to ecosystem function. I examined the drivers of intraspecific variation in the elemental phenotype of aquatic consumers to test for the generality of these effects. Over a thermal gradient in Panamá, I found that average specific growth grate and body P content of the mayfly Thraulodes increased with environmental temperature, but that these patterns were due to site-specific differences rather than the direct effects of warmer temperature. In a meta-analysis of published studies, I found that in fishes intraspecific variation in dietary N:P ratio had a significant effect on excretion N:P ratio, but only when accounting for consumption. I tested for the effects of variation in consumption on excretion N:P ratio among populations of the fish Gambusia marshi in the Cuatro Ciénegas basin in Coahuila, Mexico. G. marshi inhabits warm groundwater-fed springs where it often co-occurs with predatory fishes and cool runoff-dominated wetlands which lack predators. Using stoichiometric models, I generated predictions for how variation in environmental temperature and predation pressure would affect the N:P ratio recycled by fishes. Adult female G. marshi excretion N:P ratio was higher in runoff-dominated sites, which was consistent with predators driving increased consumption rates by G. marshi. This result was supported by a diet ration manipulation experiment in which G. marshi raised on an ad libitum diet excreted N:P at a lower ratio than fish raised on a restricted diet ration. To further support the impacts of predation on phenotypic diversification in G. marshi, I examined how body morphology varied among habitats and among closely related species. Both among and within species, predation had stronger effects on morphology than the physical environment. Overall, these results suggest that predation, not temperature, has strong effects on these phenotypic traits of aquatic consumers which can alter their role in ecosystem nutrient cycling through variation in consumption rates.
ContributorsMoody, Eric Kellan (Author) / Elser, James J (Thesis advisor) / Sabo, John L (Thesis advisor) / Angilletta, Michael J (Committee member) / Capps, Krista A (Committee member) / Collins, James P. (Committee member) / Arizona State University (Publisher)
Created2017
155051-Thumbnail Image.png
Description
Cities can be sources of nitrate to downstream ecosystems resulting in eutrophication, harmful algal blooms, and hypoxia that can have negative impacts on economies and human health. One potential solution to this problem is to increase nitrate removal in cities by providing locations where denitrification¬— a microbial process in which

Cities can be sources of nitrate to downstream ecosystems resulting in eutrophication, harmful algal blooms, and hypoxia that can have negative impacts on economies and human health. One potential solution to this problem is to increase nitrate removal in cities by providing locations where denitrification¬— a microbial process in which nitrate is reduced to N2 gas permanently removing nitrate from systems— can occur. Accidental urban wetlands– wetlands that results from human activities, but are not designed or managed for any specific outcome¬– are one such feature in the urban landscape that could help mitigate nitrate pollution through denitrification.

The overarching question of this dissertation is: how do hydrology, soil conditions, and plant patches affect patterns of denitrification in accidental urban wetlands? To answer this question, I took a three-pronged approach using a combination of field and greenhouse studies. First, I examined drivers of broad patterns of denitrification in accidental urban wetlands. Second, I used a field study to test if plant traits influence denitrification indirectly by modifying soil resources. Finally, I examined how species richness and interactions between species influence nitrate retention and patterns of denitrification using both a field study and greenhouse experiment.

Hydroperiod of accidental urban wetlands mediated patterns of denitrification in response to monsoon floods and plant patches. Specifically, ephemeral wetlands had patterns of denitrification that were largely unexplained by monsoon floods or plant patches, which are common drivers of patterns of denitrification in non-urban wetlands. Several plant traits including belowground biomass, above- and belowground tissue chemistry and rooting depth influenced denitrification indirectly by changing soil organic matter or soil nitrate. However, several other plant traits also had significant direct relationships with denitrification, (i.e. not through the hypothesized indirect relationships through soil organic matter or soil nitrate). This means these plant traits were affecting another aspect of soil conditions not included in the analysis, highlighting the need to improve our understanding of how plant traits influence denitrification. Finally, increasing species richness did not increase nitrate retention or denitrification, but rather individual species had the greatest effects on nitrate retention and denitrification.
ContributorsSuchy, Amanda Klara (Author) / Childers, Daniel L. (Thesis advisor) / Stromberg, Juliet C. (Thesis advisor) / Grimm, Nancy (Committee member) / Hall, Sharon (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2016
149520-Thumbnail Image.png
Description

General ecological thought pertaining to plant biology, conservation, and urban areas has rested on two potentially contradictory underlying assumptions. The first is that non-native plants can spread easily from human developments to “pristine” areas. The second is that native plants cannot disperse through developed areas. Both assume anthropogenic changes to

General ecological thought pertaining to plant biology, conservation, and urban areas has rested on two potentially contradictory underlying assumptions. The first is that non-native plants can spread easily from human developments to “pristine” areas. The second is that native plants cannot disperse through developed areas. Both assume anthropogenic changes to ecosystems create conditions that favor non-native plants and hinder native species. However, it is just as likely that anthropogenic alterations of habitats will favor certain groups of plant species with similar functional traits, whether native or not. Migration of plants can be divided into the following stages: dispersal, germination, establishment, reproduction and spread. Functional traits of species determine which are most successful at each of the stages of invasion or range enlargement. I studied the traits that allow both native and non-native plant species to disperse into freeway corridors, germinate, establish, reproduce, and then disperse along those corridors in Phoenix, Arizona. Field methods included seed bank sample collection and germination, vegetation surveys, and seed trapping. I also evaluated concentrations of plant-available nitrate as a result of localized nitrogen deposition. While many plant species found on the roadsides are either landscape varieties or typical weedy species, some uncommon native species and unexpected non-native species were also encountered. Maintenance regimes greatly influence the amount of vegetative cover and species composition along roadsides. Understanding which traits permit success at various stages of the invasion process indicates whether it is native, non-native, or species with particular traits that are likely to move through the city and establish in the desert. In a related case study conducted in Victoria, Australia, transportation professionals and ecologists were surveyed regarding preferences for roadside landscape design. Roadside design and maintenance projects are typically influenced by different groups of transportation professionals at various stages in a linear project cycle. Landscape architects and design professionals have distinct preferences and priorities compared to other transportation professionals and trained ecologists. The case study reveals the need for collaboration throughout the stages of design, construction and maintenance in order to efficiently manage roadsides for multiple priorities.

ContributorsGade, Kristin Joan (Author) / Kinzig, Ann P (Thesis advisor) / Grimm, Nancy (Committee member) / Perrings, Charles (Committee member) / Robbins, Paul (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2010
149470-Thumbnail Image.png
Description
The highly-social plateau pika (Lagomorpha: Ochotona curzoniae) excavates vast burrow complexes in alpine meadows on the Tibetan Plateau. Colonies of over 300 individuals/ha have been reported. As an ecosystem engineer, their burrowing may positively impact ecosystem health by increasing plant species diversity, enhancing soil mixing, and boosting water infiltration. However,

The highly-social plateau pika (Lagomorpha: Ochotona curzoniae) excavates vast burrow complexes in alpine meadows on the Tibetan Plateau. Colonies of over 300 individuals/ha have been reported. As an ecosystem engineer, their burrowing may positively impact ecosystem health by increasing plant species diversity, enhancing soil mixing, and boosting water infiltration. However, pikas are commonly regarded as pests, and are heavily poisoned throughout their range. The underlying assumption of eradication programs is that eliminating pikas will improve rangeland quality and decrease soil erosion. This dissertation explores the link between plateau pikas and the alpine meadow ecosystem in Qinghai Province, PRC. This research uses both comparative field studies and theoretical modeling to clarify the role of pika disturbance. Specifically, these studies quantify the impact of pikas on nutrient cycling (via nutrient concentrations of vegetation and soil), hydrology (via water infiltration), local landscape properties (via spatial pattern description), and vascular plant communities (via species richness and composition). The competitive relationship between livestock and pikas is examined with a mathematical model. Results of this research indicate that pika colonies have both local and community level effects on water infiltration and plant species richness. A major contribution of pika disturbance is increased spatial heterogeneity, which likely underlies differences in the plant community. These findings suggest that the positive impact of plateau pikas on rangeland resources has been undervalued. In concurrence with other studies, this work concludes that plateau pikas provide valuable ecosystem services on the Tibetan Plateau.
ContributorsHogan, Brigitte Wieshofer (Author) / Smith, Andrew T. (Thesis advisor) / Anderies, J. Marty (Committee member) / Briggs, John M. (Committee member) / Stromberg, Juliet C. (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2010
149374-Thumbnail Image.png
Description

River and riparian areas are important foraging habitat for insectivorous bats. Numerous studies have shown that aquatic insects provide an important trophic resource to terrestrial consumers, including bats, and are key in regulating population size and species interactions in terrestrial food webs. Yet these studies have generally ignored how structural

River and riparian areas are important foraging habitat for insectivorous bats. Numerous studies have shown that aquatic insects provide an important trophic resource to terrestrial consumers, including bats, and are key in regulating population size and species interactions in terrestrial food webs. Yet these studies have generally ignored how structural characteristics of the riverine landscape influence trophic resource availability or how terrestrial consumers respond to ensuing spatial and temporal patterns of trophic resources. Moreover, few studies have examined linkages between a stream's hydrologic regime and the timing and magnitude of aquatic insect availability. The main objective of my dissertation is to understand the causes of bat distributions in space and time. Specifically, I examine how trophic resource availability, structural components of riverine landscapes (channel confinement and riparian vegetation structure), and hydrologic regimes (flow permanence and timing of floods) mediate spatial and temporal patterns in bat activity. First, I show that river channel confinement determines bat activity along a river's longitudinal axis (directly above the river), while trophic resources appear to have stronger effects across a river's lateral (with distance from the river) axis. Second, I show that flow intermittency affects bat foraging activity indirectly via its effects on trophic resource availability. Seasonal river drying appears to have complex effects on bat foraging activity, initially causing imperfect tracking by consumers of localized concentrations of resources but later resulting in disappearance of both insects and bats after complete river drying. Third, I show that resource tracking by bats varies among streams with contrasting patterns of trophic resource availability and this variation appears to be in response to differences in the timing of aquatic insect emergence, duration and magnitude of emergence, and adult body size of emergent aquatic insects. Finally, I show that aquatic insects directly influence bat activity along a desert stream and that riparian vegetation composition affects bat activity, but only indirectly, via effects on aquatic insect availability. Overall, my results show river channel confinement, riparian vegetation structure, flow permanence, and the timing of floods influence spatial and temporal patterns in bat distributions; but these effects are indirect by influencing the ability of bats to track trophic resources in space and time.

ContributorsHagen, Elizabeth M (Author) / Sabo, John L (Thesis advisor) / Fisher, Stuart G. (Committee member) / Grimm, Nancy (Committee member) / Schmeeckle, Mark W (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2010
161831-Thumbnail Image.png
Description
Globally, rivers are being heavily dammed and over-utilized to the point where water shortages are starting to occur. This problem is magnified in arid and semi-arid regions where climate change, growing populations, intensive agriculture and urbanization have created tremendous pressures on existing river systems. Regulatory incentives have been enacted in

Globally, rivers are being heavily dammed and over-utilized to the point where water shortages are starting to occur. This problem is magnified in arid and semi-arid regions where climate change, growing populations, intensive agriculture and urbanization have created tremendous pressures on existing river systems. Regulatory incentives have been enacted in recent decades that have spurred river restoration programs in the United States. But what kind of governance does river restoration require that is different from allocative institutional set-ups? Are these recovery programs succeeding in restoring ecological health and resilience of the rivers? Do the programs contribute to social-ecological resilience of the river systems more broadly? This study aims to tackle these key questions for two Colorado River sub-basin recovery programs (one in the Upper Basin and one in the Lower Basin) through utilization of different frameworks and methodologies for each. Organizational resilience to institutional and biophysical disturbances varies, with the Upper Basin program being more resilient than the Lower Basin program. Ecological resilience as measured by beta diversity (for the Upper Basin) was a factor of the level of hydrological and technological interventions rather than an occurrence of the natural flow regime. This points to the fact that in a highly-dampened and managed system like the Colorado River, the dampened flow regime alone is not a significant factor in maintaining community diversity and ecological health. A broad-scale social-ecological analysis supports the finding that the natural feedback between social and ecological elements is broken and recovery efforts are more an attempt at resuscitating the river system to maintain a semblance of historic levels of fish populations and aquatic processes. Adaptive management pathways for the future need to address and build pathways to transformability into recovery planning to achieve resilience for the river system.
ContributorsSrinivasan, Jaishri (Author) / Schoon, Michael L (Thesis advisor) / Sabo, John L (Thesis advisor) / White, Dave D (Committee member) / Janssen, Marcus A (Committee member) / Arizona State University (Publisher)
Created2021
161911-Thumbnail Image.png
Description
Though the connection between terrestrial riparian consumers and the adjacent aquatic food web has been well-studied in a variety of systems, gaps with respect to several habitats remain. The Colorado River Basin represents many of these untested habitat characteristics: it contains large, controlled rivers in an arid environment that are

Though the connection between terrestrial riparian consumers and the adjacent aquatic food web has been well-studied in a variety of systems, gaps with respect to several habitats remain. The Colorado River Basin represents many of these untested habitat characteristics: it contains large, controlled rivers in an arid environment that are often canyon-bound. These characteristics, however, are not unique to the Colorado River Basin. Dams and arid lands are becoming increasingly common around the world, stressing the importance of understanding the function of riparian areas within the Colorado River Basin and basins like it. Stable isotopes, including the more recent application of deuterium, can be used to elucidate trophic linkages between rivers and their riparia. Though dams may harm aquatic insect populations, it is possible that they also make aquatic insects a stable, constant food source to the riparian biological community. This dissertation demonstrates that aquatic emergent insects are a reliable, and therefore important, food source for arid land riparian consumers along regulated rivers. However, the importance of aquatic emergent insects to riparian consumers may vary across sites, even within the same river basin. To explore this variation, the diet of a common riparian lizard species Urosaurus ornatus (Ornate Tree Lizard) can be used as an indicator of cross-ecosystem connectivity. This dissertation demonstrates linkages between two differing river segments and U. ornatus, showcasing its ability as an indicator of connectivity across a diversity of systems. Within the Colorado River Basin, the Grand Canyon provides an opportunity to study a variety of riparian consumers across a gradient of habitat parameters and dam effects. This dissertation demonstrates the manifold connections between large, regulated rivers and arid riparian consumers, ranging from lizards, to bats, to, for the first time, mice. Monsoons have differing effects on river-riparian communities in this basin, potentially related to intact tributary confluences. Lastly, this dissertation demonstrates that hydropeaking reduces river-riparia connectivity by reducing aquatic insect emergence. This dissertation seeks to improve understanding of the linkages between river and their riparia to aid in the management of arid riparian areas affected by dams worldwide.
ContributorsLupoli, Christina Alexandra (Author) / Sabo, John L (Thesis advisor) / DeNardo, Dale F (Committee member) / Kennedy, Theodore A (Committee member) / Muehlbauer, Jeffrey D (Committee member) / Yackulic, Charles B (Committee member) / Arizona State University (Publisher)
Created2021