Matching Items (6)
Filtering by

Clear all filters

156177-Thumbnail Image.png
Description
The activation of the primary motor cortex (M1) is common in speech perception tasks that involve difficult listening conditions. Although the challenge of recognizing and discriminating non-native speech sounds appears to be an instantiation of listening under difficult circumstances, it is still unknown if M1 recruitment is facilitatory of second

The activation of the primary motor cortex (M1) is common in speech perception tasks that involve difficult listening conditions. Although the challenge of recognizing and discriminating non-native speech sounds appears to be an instantiation of listening under difficult circumstances, it is still unknown if M1 recruitment is facilitatory of second language speech perception. The purpose of this study was to investigate the role of M1 associated with speech motor centers in processing acoustic inputs in the native (L1) and second language (L2), using repetitive Transcranial Magnetic Stimulation (rTMS) to selectively alter neural activity in M1. Thirty-six healthy English/Spanish bilingual subjects participated in the experiment. The performance on a listening word-to-picture matching task was measured before and after real- and sham-rTMS to the orbicularis oris (lip muscle) associated M1. Vowel Space Area (VSA) obtained from recordings of participants reading a passage in L2 before and after real-rTMS, was calculated to determine its utility as an rTMS aftereffect measure. There was high variability in the aftereffect of the rTMS protocol to the lip muscle among the participants. Approximately 50% of participants showed an inhibitory effect of rTMS, evidenced by smaller motor evoked potentials (MEPs) area, whereas the other 50% had a facilitatory effect, with larger MEPs. This suggests that rTMS has a complex influence on M1 excitability, and relying on grand-average results can obscure important individual differences in rTMS physiological and functional outcomes. Evidence of motor support to word recognition in the L2 was found. Participants showing an inhibitory aftereffect of rTMS on M1 produced slower and less accurate responses in the L2 task, whereas those showing a facilitatory aftereffect of rTMS on M1 produced more accurate responses in L2. In contrast, no effect of rTMS was found on the L1, where accuracy and speed were very similar after sham- and real-rTMS. The L2 VSA measure was indicative of the aftereffect of rTMS to M1 associated with speech production, supporting its utility as an rTMS aftereffect measure. This result revealed an interesting and novel relation between cerebral motor cortex activation and speech measures.
ContributorsBarragan, Beatriz (Author) / Liss, Julie (Thesis advisor) / Berisha, Visar (Committee member) / Rogalsky, Corianne (Committee member) / Restrepo, Adelaida (Committee member) / Arizona State University (Publisher)
Created2018
157084-Thumbnail Image.png
Description
Cognitive deficits often accompany language impairments post-stroke. Past research has focused on working memory in aphasia, but attention is largely underexplored. Therefore, this dissertation will first quantify attention deficits post-stroke before investigating whether preserved cognitive abilities, including attention, can improve auditory sentence comprehension post-stroke. In Experiment 1a, three components of

Cognitive deficits often accompany language impairments post-stroke. Past research has focused on working memory in aphasia, but attention is largely underexplored. Therefore, this dissertation will first quantify attention deficits post-stroke before investigating whether preserved cognitive abilities, including attention, can improve auditory sentence comprehension post-stroke. In Experiment 1a, three components of attention (alerting, orienting, executive control) were measured in persons with aphasia and matched-controls using visual and auditory versions of the well-studied Attention Network Test. Experiment 1b then explored the neural resources supporting each component of attention in the visual and auditory modalities in chronic stroke participants. The results from Experiment 1a indicate that alerting, orienting, and executive control are uniquely affected by presentation modality. The lesion-symptom mapping results from Experiment 1b associated the left angular gyrus with visual executive control, the left supramarginal gyrus with auditory alerting, and Broca’s area (pars opercularis) with auditory orienting attention post-stroke. Overall, these findings indicate that perceptual modality may impact the lateralization of some aspects of attention, thus auditory attention may be more susceptible to impairment after a left hemisphere stroke.

Prosody, rhythm and pitch changes associated with spoken language may improve spoken language comprehension in persons with aphasia by recruiting intact cognitive abilities (e.g., attention and working memory) and their associated non-lesioned brain regions post-stroke. Therefore, Experiment 2 explored the relationship between cognition, two unique prosody manipulations, lesion location, and auditory sentence comprehension in persons with chronic stroke and matched-controls. The combined results from Experiment 2a and 2b indicate that stroke participants with better auditory orienting attention and a specific left fronto-parietal network intact had greater comprehension of sentences spoken with sentence prosody. For list prosody, participants with deficits in auditory executive control and/or short-term memory and the left angular gyrus and globus pallidus relatively intact, demonstrated better comprehension of sentences spoken with list prosody. Overall, the results from Experiment 2 indicate that following a left hemisphere stroke, individuals need good auditory attention and an intact left fronto-parietal network to benefit from typical sentence prosody, yet when cognitive deficits are present and this fronto-parietal network is damaged, list prosody may be more beneficial.
ContributorsLaCroix, Arianna (Author) / Rogalsky, Corianne (Thesis advisor) / Azuma, Tamiko (Committee member) / Braden, B. Blair (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2019
168329-Thumbnail Image.png
Description
Repetitive practice of functional movement patterns during motor rehabilitation are known to drive learning (or relearning) of novel motor skills, but the learning process is highly variable between individuals such that responsiveness to task-specific training is often patient-specific. A number of neuroimaging and neurophysiological methods have been proposed to better

Repetitive practice of functional movement patterns during motor rehabilitation are known to drive learning (or relearning) of novel motor skills, but the learning process is highly variable between individuals such that responsiveness to task-specific training is often patient-specific. A number of neuroimaging and neurophysiological methods have been proposed to better predict a patient’s responsiveness to a given type or dose of motor therapy. However, these methods are often time- and resource-intensive, and yield results that are not readily interpretable by clinicians. In contrast, standardized visuospatial tests may offer a more feasible solution. The work presented in this dissertation demonstrate that a clinical paper-and-pencil test of visuospatial function may improve predictive models of motor skill learning in older adults and individuals with stroke pathology. To further our understanding of the neuroanatomical correlates underlying this behavioral relationship, I collected diffusion-weighted magnetic resonance images from 19 nondemented older adults to determine if diffusion characteristics of white matter tracts explain shared variance in delayed visuospatial memory test scores and motor skill learning. Consistent with previous work, results indicated that the structural integrity of regions with the bilateral anterior thalamic radiations, corticospinal tracts, and superior longitudinal fasciculi are related to delayed visuospatial memory performance and one-week skill retention. Overall, results of this dissertation suggest that incorporating a clinical paper-and-pencil test of delayed visuospatial memory may prognose motor rehabilitation outcomes and support that personalized variables should be considered in standards of care. Moreover, regions within specific white matter tracts may underlie this behavioral relationship and future work should investigate these regions as potential targets for therapeutic intervention.
ContributorsLingo VanGilder, Jennapher (Author) / Schaefer, Sydney Y (Thesis advisor) / Santello, Marco (Committee member) / Buneo, Christopher (Committee member) / Rogalsky, Corianne (Committee member) / Duff, Kevin (Committee member) / Arizona State University (Publisher)
Created2021
171839-Thumbnail Image.png
Description
Autism shows a pronounced and replicable sex bias with approximately three-to-four males diagnosed for every one female. Sex-related biology is thought to play a role in the sex bias, such that female biology may be protective and/or male biology may increase vulnerability to autism in the context of similar genetic

Autism shows a pronounced and replicable sex bias with approximately three-to-four males diagnosed for every one female. Sex-related biology is thought to play a role in the sex bias, such that female biology may be protective and/or male biology may increase vulnerability to autism in the context of similar genetic risk. Beyond etiology, sex-related biology has also been implicated in lifespan risk for health and psychiatric conditions that show common co-morbidity in autism. Thus, understanding how sex-related biology impacts autism etiology and progression has important implications for prognosis and treatment. Neuroimaging offers a powerful tool for in-vivo characterization of brain-based sex differences in autism, especially given emerging efforts to develop large, well-characterized longitudinal samples. To date, however, neuroimaging studies have shown mixed and inconsistent findings, which remain challenging to integrate in the broader literature context. In a recent systematic review of neuroimaging studies of typical sex differences, few to no replicable effects were found beyond brain size, suggesting the brain is not “sexually dimorphic.” Instead, it is argued that the brain is a “mosaic” of features from various sources, including masculine and feminine biological processes as well as individual genetics and environment. Thus, designing neuroimaging studies that are sensitive to brain-based sex differences in autism likely requires careful study design and analytical method selection. Through a series of studies, the overarching dissertation aim was to identify optimal methods for characterizing neuroimaging-based sex differences in autism and to test these methods in preliminary samples. Study 1 comprised a systematic review of studies examining neuroimaging-based sex differences in autism with the aim of identifying optimal study designs, neuroimaging modalities, and analytical methods. Study 2 focused on examining the sensitivity of a connectome-wide approach to identify functional connectivity hubs underlying sex-biased behavior associated with autism (e.g., camouflaging). Study 3 used a connectome-wide functional connectivity approach to characterize sex differences in longitudinal changes associated with autistic traits vs. categorical diagnosis. These studies suggest that optimizing study design and methods improves identification of biologically plausible and clinically meaningful brain sex differences in autism. The relevance of findings to etiology and prognosis are discussed.
ContributorsWalsh, Melissa (Author) / Braden, B. Blair (Thesis advisor) / Azuma, Tamiko (Committee member) / Rogalsky, Corianne (Committee member) / Arizona State University (Publisher)
Created2022
171445-Thumbnail Image.png
Description
Stroke is the leading cause of long-term disability in the U.S., with up to 60% of strokescausing speech loss. Individuals with severe stroke, who require the most frequent, intense speech therapy, often cannot adhere to treatments due to high cost and low success rates. Therefore, the ability to make functionally

Stroke is the leading cause of long-term disability in the U.S., with up to 60% of strokescausing speech loss. Individuals with severe stroke, who require the most frequent, intense speech therapy, often cannot adhere to treatments due to high cost and low success rates. Therefore, the ability to make functionally significant changes in individuals with severe post- stroke aphasia remains a key challenge for the rehabilitation community. This dissertation aimed to evaluate the efficacy of Startle Adjuvant Rehabilitation Therapy (START), a tele-enabled, low- cost treatment, to improve quality of life and speech in individuals with severe-to-moderate stroke. START is the exposure to startling acoustic stimuli during practice of motor tasks in individuals with stroke. START increases the speed and intensity of practice in severely impaired post-stroke reaching, with START eliciting muscle activity 2-3 times higher than maximum voluntary contraction. Voluntary reaching distance, onset, and final accuracy increased after a session of START, suggesting a rehabilitative effect. However, START has not been evaluated during impaired speech. The objective of this study is to determine if impaired speech can be elicited by startling acoustic stimuli, and if three days of START training can enhance clinical measures of moderate to severe post-stroke aphasia and apraxia of speech. This dissertation evaluates START in 42 individuals with post-stroke speech impairment via telehealth in a Phase 0 clinical trial. Results suggest that impaired speech can be elicited by startling acoustic stimuli and that START benefits individuals with severe-to-moderate post-stroke impairments in both linguistic and motor speech domains. This fills an important gap in aphasia care, as many speech therapies remain ineffective and financially inaccessible for patients with severe deficits. START is effective, remotely delivered, and may likely serve as an affordable adjuvant to traditional therapy for those that have poor access to quality care.
ContributorsSwann, Zoe Elisabeth (Author) / Honeycutt, Claire F (Thesis advisor) / Daliri, Ayoub (Committee member) / Rogalsky, Corianne (Committee member) / Liss, Julie (Committee member) / Schaefer, Sydney (Committee member) / Arizona State University (Publisher)
Created2022
157583-Thumbnail Image.png
Description
The label-feedback hypothesis (Lupyan, 2007, 2012) proposes that language modulates low- and high-level visual processing, such as priming visual object perception. Lupyan and Swingley (2012) found that repeating target names facilitates visual search, reducing response times and increasing accuracy. Hebert, Goldinger, and Walenchok (under review) used a modified

The label-feedback hypothesis (Lupyan, 2007, 2012) proposes that language modulates low- and high-level visual processing, such as priming visual object perception. Lupyan and Swingley (2012) found that repeating target names facilitates visual search, reducing response times and increasing accuracy. Hebert, Goldinger, and Walenchok (under review) used a modified design to replicate and extend this finding, and concluded that speaking modulates visual search via template integrity. The current series of experiments 1) replicated the work of Hebert et al. with audio stimuli played through headphones instead of self-directed speech, 2) examined the label feedback effect under conditions of varying object clarity, and 3) explored whether the relative prevalence of a target’s audio label might modulate the label feedback effect (as in the low prevalence effect; Wolfe, Horowitz, & Kenner, 2005). Paradigms utilized both traditional spatial visual search and repeated serial visual presentation (RSVP). Results substantiated those found in previous studies—hearing target names improved performance, even (and sometimes especially) when conditions were difficult or noisy, and the relative prevalence of a target’s audio label strongly impacted its perception. The mechanisms of the label feedback effect––namely, priming and target template integrity––are explored.
ContributorsHebert, Katherine P (Author) / Goldinger, Stephen D (Thesis advisor) / Rogalsky, Corianne (Committee member) / McClure, Samuel M. (Committee member) / Benitez, Viridiana (Committee member) / Arizona State University (Publisher)
Created2019