Matching Items (2)
Filtering by

Clear all filters

171891-Thumbnail Image.png
Description
First evolving in cyanobacteria, the light reactions of oxygenic photosynthesis are carried out by the membrane proteins, photosystem II and photosystem I, located in the thylakoid membrane. Both utilize light captured by their core antenna systems to catalyze a charge separation event at their respective reaction centers and energizes electrons

First evolving in cyanobacteria, the light reactions of oxygenic photosynthesis are carried out by the membrane proteins, photosystem II and photosystem I, located in the thylakoid membrane. Both utilize light captured by their core antenna systems to catalyze a charge separation event at their respective reaction centers and energizes electrons to be transferred energetically uphill, eventually to be stored as a high energy chemical bond. These protein complexes are highly conserved throughout different photosynthetic lineages and understanding the variations across species is vital for a complete understanding of how photosynthetic organisms can adapt to vastly different environmental conditions. Most knowledge about photosynthesis comes from only a handful of model organisms grown under laboratory conditions. Studying model organisms has facilitated major breakthroughs in understanding photosynthesis, however, due to the vast global diversity of environments where photosynthetic organisms are found, certain aspects of this process may be overlooked or missed by focusing on a select group of organisms optimized for studying in laboratory conditions. This dissertation describes the isolation of a new extremophile cyanobacteria, Cyanobacterium aponinum 0216, from the Arizona Sonoran Desert and its innate ability to grow in light intensities that exceed other model organisms. A structure guided approach was taken to investigate how the structure of photosystem I can influence the spectroscopic properties of chlorophylls, with a particular focus on long wavelength chlorophylls, in an attempt to uncover if photosystem I is responsible for high light tolerance in Cyanobacterium aponinum 0216. To accomplish this, the structure of photosystem I was solved by cryogenic electron microscopy to 2.7-anstrom resolution. By comparing the structure and protein sequences of Cyanobacterium aponinum to other model organisms, specific variations were identified and explored by constructing chimeric PSIs in the model organism Synechocystis sp. PCC 6803 to determine the effects that each specific variation causes. The results of this dissertation describe how the protein structure and composition affect the spectroscopic properties of chlorophyll molecules and the oligomeric structure of photosystem I, possibly providing an evolutionary advantage in the high light conditions observed in the Arizona Sonoran Desert.
ContributorsDobson, Zachary (Author) / Fromme, Petra (Thesis advisor) / Mazor, Yuval (Thesis advisor) / Redding, Kevin (Committee member) / Moore, Gary (Committee member) / Arizona State University (Publisher)
Created2022
154347-Thumbnail Image.png
Description
One of the greatest problems facing society today is the development of a

sustainable, carbon neutral energy source to curb the reliance on fossil fuel combustion as the primary source of energy. To overcome this challenge, research efforts have turned to biology for inspiration, as nature is adept at inter-converting low

One of the greatest problems facing society today is the development of a

sustainable, carbon neutral energy source to curb the reliance on fossil fuel combustion as the primary source of energy. To overcome this challenge, research efforts have turned to biology for inspiration, as nature is adept at inter-converting low molecular weight precursors into complex molecules. A number of inorganic catalysts have been reported that mimic the active sites of energy-relevant enzymes such as hydrogenases and carbon monoxide dehydrogenase. However, these inorganic models fail to achieve the high activity of the enzymes, which function in aqueous systems, as they lack the critical secondary-shell interactions that enable the active site of enzymes to outperform their organometallic counterparts.

To address these challenges, my work utilizes bio-hybrid systems in which artificial proteins are used to modulate the properties of organometallic catalysts. This approach couples the diversity of organometallic function with the robust nature of protein biochemistry, aiming to utilize the protein scaffold to not only enhance rates of reaction, but also to control catalytic cycles and reaction outcomes. To this end, I have used chemical biology techniques to modify natural protein structures and augment the H2 producing ability of a cobalt-catalyst by a factor of five through simple mutagenesis. Concurrently I have designed and characterized a de novo peptide that incorporates various iron sulfur clusters at discrete distances from one another, facilitating electron transfer between the two. Finally, using computational methodologies I have engineered proteins to alter the specificity of a CO2 reduction reaction. The proteins systems developed herein allow for study of protein secondary-shell interactions during catalysis, and enable structure-function relationships to be built. The complete system will be interfaced with a solar fuel cell, accepting electrons from a photosensitized dye and storing energy in chemical bonds, such as H2 or methanol.
ContributorsSommer, Dayn (Author) / Ghirlanda, Giovanna (Thesis advisor) / Redding, Kevin (Committee member) / Moore, Gary (Committee member) / Arizona State University (Publisher)
Created2016