Matching Items (51)

Filtering by

Clear all filters

149867-Thumbnail Image.png

Incorporating auditory models in speech/audio applications

Description

Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception.

Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding an auditory model in the objective function formulation and proposes possible solutions to overcome high complexity issues for use in real-time speech/audio algorithms. Specific problems addressed in this dissertation include: 1) the development of approximate but computationally efficient auditory model implementations that are consistent with the principles of psychoacoustics, 2) the development of a mapping scheme that allows synthesizing a time/frequency domain representation from its equivalent auditory model output. The first problem is aimed at addressing the high computational complexity involved in solving perceptual objective functions that require repeated application of auditory model for evaluation of different candidate solutions. In this dissertation, a frequency pruning and a detector pruning algorithm is developed that efficiently implements the various auditory model stages. The performance of the pruned model is compared to that of the original auditory model for different types of test signals in the SQAM database. Experimental results indicate only a 4-7% relative error in loudness while attaining up to 80-90 % reduction in computational complexity. Similarly, a hybrid algorithm is developed specifically for use with sinusoidal signals and employs the proposed auditory pattern combining technique together with a look-up table to store representative auditory patterns. The second problem obtains an estimate of the auditory representation that minimizes a perceptual objective function and transforms the auditory pattern back to its equivalent time/frequency representation. This avoids the repeated application of auditory model stages to test different candidate time/frequency vectors in minimizing perceptual objective functions. In this dissertation, a constrained mapping scheme is developed by linearizing certain auditory model stages that ensures obtaining a time/frequency mapping corresponding to the estimated auditory representation. This paradigm was successfully incorporated in a perceptual speech enhancement algorithm and a sinusoidal component selection task.

Contributors

Agent

Created

Date Created
2011

152193-Thumbnail Image.png

Performance enhancement of space-time adaptive processing for GPS and microstrip antenna design using ferrite rings

Description

Global Positioning System (GPS) is a navigation system widely used in civilian and military application, but its accuracy is highly impacted with consequential fading, and possible loss of communication due to multipath propagation and high power interferences. This dissertation proposes

Global Positioning System (GPS) is a navigation system widely used in civilian and military application, but its accuracy is highly impacted with consequential fading, and possible loss of communication due to multipath propagation and high power interferences. This dissertation proposes alternatives to improve the performance of the GPS receivers to obtain a system that can be reliable in critical situations. The basic performance of the GPS receiver consists of receiving the signal with an antenna array, delaying the signal at each antenna element, weighting the delayed replicas, and finally, combining the weighted replicas to estimate the desired signal. Based on these, three modifications are proposed to improve the performance of the system. The first proposed modification is the use of the Least Mean Squares (LMS) algorithm with two variations to decrease the convergence time of the classic LMS while achieving good system stability. The results obtained by the proposed LMS demonstrate that the algorithm can achieve the same stability as the classic LMS using a small step size, and its convergence rate is better than the classic LMS using a large step size. The second proposed modification is to replace the uniform distribution of the time delays (or taps) by an exponential distribution that decreases the bit-error rate (BER) of the system without impacting the computational efficiency of the uniform taps. The results show that, for a BER of 0.001, the system can operate with a 1 to 2 dB lower signal-to-noise ratio (SNR) when an exponential distribution is used rather than a uniform distribution. Finally, the third modification is implemented in the design of the antenna array. In this case, the gain of each microstrip element is enhanced by embedding ferrite rings in the substrate, creating a hybrid substrate. The ferrite rings generates constructive interference between the incident and reflected fields; consequently, the gain of a single microstrip element is enhanced by up to 4 dB. When hybrid substrates are used in microstrip element arrays, a significant enhancement in angle range is achieved for a given reflection coefficient compared to using a conventional substrate.

Contributors

Agent

Created

Date Created
2013

152455-Thumbnail Image.png

On the ordering of communication channels

Description

This dissertation introduces stochastic ordering of instantaneous channel powers of fading channels as a general method to compare the performance of a communication system over two different channels, even when a closed-form expression for the metric may not be available.

This dissertation introduces stochastic ordering of instantaneous channel powers of fading channels as a general method to compare the performance of a communication system over two different channels, even when a closed-form expression for the metric may not be available. Such a comparison is with respect to a variety of performance metrics such as error rates, outage probability and ergodic capacity, which share common mathematical properties such as monotonicity, convexity or complete monotonicity. Complete monotonicity of a metric, such as the symbol error rate, in conjunction with the stochastic Laplace transform order between two fading channels implies the ordering of the two channels with respect to the metric. While it has been established previously that certain modulation schemes have convex symbol error rates, there is no study of the complete monotonicity of the same, which helps in establishing stronger channel ordering results. Toward this goal, the current research proves for the first time, that all 1-dimensional and 2-dimensional modulations have completely monotone symbol error rates. Furthermore, it is shown that the frequently used parametric fading distributions for modeling line of sight exhibit a monotonicity in the line of sight parameter with respect to the Laplace transform order. While the Laplace transform order can also be used to order fading distributions based on the ergodic capacity, there exist several distributions which are not Laplace transform ordered, although they have ordered ergodic capacities. To address this gap, a new stochastic order called the ergodic capacity order has been proposed herein, which can be used to compare channels based on the ergodic capacity. Using stochastic orders, average performance of systems involving multiple random variables are compared over two different channels. These systems include diversity combining schemes, relay networks, and signal detection over fading channels with non-Gaussian additive noise. This research also addresses the problem of unifying fading distributions. This unification is based on infinite divisibility, which subsumes almost all known fading distributions, and provides simplified expressions for performance metrics, in addition to enabling stochastic ordering.

Contributors

Agent

Created

Date Created
2014

152260-Thumbnail Image.png

Multipath mitigating correlation kernels

Description

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. Independent parameters provide a means to trade-off code tracking discriminant gain against multipath mitigation performance. The algorithm performance is characterized in terms of multipath phase error bias, phase error estimation variance, tracking range, tracking ambiguity and implementation complexity. The algorithm is suitable for modernized GNSS signals including Binary Phase Shift Keyed (BPSK) and a variety of Binary Offset Keyed (BOC) signals. The algorithm compensates for unbalanced code sequences to ensure a code tracking bias does not result from the use of asymmetric correlation kernels. The algorithm does not require explicit knowledge of the propagation channel model. Design recommendations for selecting the algorithm parameters to mitigate precorrelation filter distortion are also provided.

Contributors

Agent

Created

Date Created
2013

154022-Thumbnail Image.png

On code design for interference channels

Description

There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for

There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, irregular low-density-parity-check codes are exploited for a variety of cases and trellis based codes for short block length designs are performed.

Novel code design approaches are first studied for the two-user Gaussian multiple access channel. Exploiting Gaussian mixture approximation, new methods are proposed wherein the optimized codes are shown to improve upon the available designs and off-the-shelf point-to-point codes applied to the multiple access channel scenario. The code design is then examined for the two-user Gaussian interference channel implementing the Han-Kobayashi encoding and decoding strategy. Compared with the point-to-point codes, the newly designed codes consistently offer better performance. Parallel to this work, code design is explored for the discrete memoryless interference channels wherein the channel inputs and outputs are taken from a finite alphabet and it is demonstrated that the designed codes are superior to the single user codes used with time sharing. Finally, the code design principles are also investigated for the two-user Gaussian interference channel employing trellis-based codes with short block lengths for the case of strong and mixed interference levels.

Contributors

Agent

Created

Date Created
2015

154319-Thumbnail Image.png

Localization in wireless sensor networks

Description

In many applications, measured sensor data is meaningful only when the location of sensors is accurately known. Therefore, the localization accuracy is crucial. In this dissertation, both location estimation and location detection problems are considered.

In location estimation problems, sensor

In many applications, measured sensor data is meaningful only when the location of sensors is accurately known. Therefore, the localization accuracy is crucial. In this dissertation, both location estimation and location detection problems are considered.

In location estimation problems, sensor nodes at known locations, called anchors, transmit signals to sensor nodes at unknown locations, called nodes, and use these transmissions to estimate the location of the nodes. Specifically, the location estimation in the presence of fading channels using time of arrival (TOA) measurements with narrowband communication signals is considered. Meanwhile, the Cramer-Rao lower bound (CRLB) for localization error under different assumptions is derived. Also, maximum likelihood estimators (MLEs) under these assumptions are derived.

In large WSNs, distributed location estimation algorithms are more efficient than centralized algorithms. A sequential localization scheme, which is one of distributed location estimation algorithms, is considered. Also, different localization methods, such as TOA, received signal strength (RSS), time difference of arrival (TDOA), direction of arrival (DOA), and large aperture array (LAA) are compared under different signal-to-noise ratio (SNR) conditions. Simulation results show that DOA is the preferred scheme at the low SNR regime and the LAA localization algorithm provides better performance for network discovery at high SNRs. Meanwhile, the CRLB for the localization error using the TOA method is also derived.

A distributed location detection scheme, which allows each anchor to make a decision as to whether a node is active or not is proposed. Once an anchor makes a decision, a bit is transmitted to a fusion center (FC). The fusion center combines all the decisions and uses a design parameter $K$ to make the final decision. Three scenarios are considered in this dissertation. Firstly, location detection at a known location is considered. Secondly, detecting a node in a known region is considered. Thirdly, location detection in the presence of fading is considered. The optimal thresholds are derived and the total probability of false alarm and detection under different scenarios are derived.

Contributors

Agent

Created

Date Created
2016

151126-Thumbnail Image.png

Coding for insertion/deletion channels

Description

Insertion and deletion errors represent an important category of channel impairments. Despite their importance and much work over the years, channels with such impairments are far from being fully understood as they proved to be difficult to analyze. In this

Insertion and deletion errors represent an important category of channel impairments. Despite their importance and much work over the years, channels with such impairments are far from being fully understood as they proved to be difficult to analyze. In this dissertation, a promising coding scheme is investigated over independent and identically distributed (i.i.d.) insertion/deletion channels, i.e., interleaved concatenation of an outer low-density parity-check (LDPC) code with error-correction capabilities and an inner marker code for synchronization purposes. Marker code structures which offer the highest achievable rates are found with standard bit-level synchronization is performed. Then, to exploit the correlations in the likelihoods corresponding to different transmitted bits, a novel symbol-level synchronization algorithm that works on groups of consecutive bits is introduced. Extrinsic information transfer (EXIT) charts are also utilized to analyze the convergence behavior of the receiver, and to design LDPC codes with degree distributions matched to these channels. The next focus is on segmented deletion channels. It is first shown that such channels are information stable, and hence their channel capacity exists. Several upper and lower bounds are then introduced in an attempt to understand the channel capacity behavior. The asymptotic behavior of the channel capacity is also quantified when the average bit deletion rate is small. Further, maximum-a-posteriori (MAP) based synchronization algorithms are developed and specific LDPC codes are designed to match the channel characteristics. Finally, in addition to binary substitution errors, coding schemes and the corresponding detection algorithms are also studied for several other models with synchronization errors, including inter-symbol interference (ISI) channels, channels with multiple transmit/receive elements and multi-user communication systems.

Contributors

Agent

Created

Date Created
2012

151107-Thumbnail Image.png

Performance analysis of MIMO relay networks with beamforming

Description

This dissertation considers two different kinds of two-hop multiple-input multiple-output (MIMO) relay networks with beamforming (BF). First, "one-way" amplify-and-forward (AF) and decode-and-forward (DF) MIMO BF relay networks are considered, in which the relay amplifies or decodes the received signal from

This dissertation considers two different kinds of two-hop multiple-input multiple-output (MIMO) relay networks with beamforming (BF). First, "one-way" amplify-and-forward (AF) and decode-and-forward (DF) MIMO BF relay networks are considered, in which the relay amplifies or decodes the received signal from the source and forwards it to the destination, respectively, where all nodes beamform with multiple antennas to obtain gains in performance with reduced power consumption. A direct link from source to destination is included in performance analysis. Novel systematic upper-bounds and lower-bounds to average bit or symbol error rates (BERs or SERs) are proposed. Second, "two-way" AF MIMO BF relay networks are investigated, in which two sources exchange their data through a relay, to improve the spectral efficiency compared with one-way relay networks. Novel unified performance analysis is carried out for five different relaying schemes using two, three, and four time slots in sum-BER, the sum of two BERs at both sources, in two-way relay networks with and without direct links. For both kinds of relay networks, when any node is beamforming simultaneously to two nodes (i.e. from source to relay and destination in one-way relay networks, and from relay to both sources in two-way relay networks), the selection of the BF coefficients at a beamforming node becomes a challenging problem since it has to balance the needs of both receiving nodes. Although this "BF optimization" is performed for BER, SER, and sum-BER in this dissertation, the solution for optimal BF coefficients not only is difficult to implement, it also does not lend itself to performance analysis because the optimal BF coefficients cannot be expressed in closed-form. Therefore, the performance of optimal schemes through bounds, as well as suboptimal ones such as strong-path BF, which beamforms to the stronger path of two links based on their received signal-to-noise ratios (SNRs), is provided for BERs or SERs, for the first time. Since different channel state information (CSI) assumptions at the source, relay, and destination provide different error performance, various CSI assumptions are also considered.

Contributors

Agent

Created

Date Created
2012

151953-Thumbnail Image.png

Distributed inference using bounded transmissions

Description

Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are

Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first part of the dissertation, a distributed detection scheme where the sensors transmit with constant modulus signals over a Gaussian multiple access channel is considered. The deflection coefficient of the proposed scheme is shown to depend on the characteristic function of the sensing noise, and the error exponent for the system is derived using large deviation theory. Optimization of the deflection coefficient and error exponent are considered with respect to a transmission phase parameter for a variety of sensing noise distributions including impulsive ones. The proposed scheme is also favorably compared with existing amplify-and-forward (AF) and detect-and-forward (DF) schemes. The effect of fading is shown to be detrimental to the detection performance and simulations are provided to corroborate the analytical results. The second part of the dissertation studies a distributed inference scheme which uses bounded transmission functions over a Gaussian multiple access channel. The conditions on the transmission functions under which consistent estimation and reliable detection are possible is characterized. For the distributed estimation problem, an estimation scheme that uses bounded transmission functions is proved to be strongly consistent provided that the variance of the noise samples are bounded and that the transmission function is one-to-one. The proposed estimation scheme is compared with the amplify and forward technique and its robustness to impulsive sensing noise distributions is highlighted. It is also shown that bounded transmissions suffer from inconsistent estimates if the sensing noise variance goes to infinity. For the distributed detection problem, similar results are obtained by studying the deflection coefficient. Simulations corroborate our analytical results. In the third part of this dissertation, the problem of estimating the average of samples distributed at the nodes of a sensor network is considered. A distributed average consensus algorithm in which every sensor transmits with bounded peak power is proposed. In the presence of communication noise, it is shown that the nodes reach consensus asymptotically to a finite random variable whose expectation is the desired sample average of the initial observations with a variance that depends on the step size of the algorithm and the variance of the communication noise. The asymptotic performance is characterized by deriving the asymptotic covariance matrix using results from stochastic approximation theory. It is shown that using bounded transmissions results in slower convergence compared to the linear consensus algorithm based on the Laplacian heuristic. Simulations corroborate our analytical findings. Finally, a robust distributed average consensus algorithm in which every sensor performs a nonlinear processing at the receiver is proposed. It is shown that non-linearity at the receiver nodes makes the algorithm robust to a wide range of channel noise distributions including the impulsive ones. It is shown that the nodes reach consensus asymptotically and similar results are obtained as in the case of transmit non-linearity. Simulations corroborate our analytical findings and highlight the robustness of the proposed algorithm.

Contributors

Agent

Created

Date Created
2013

150187-Thumbnail Image.png

Waveform mapping and time-frequency processing of biological sequences and structures

Description

Genomic and proteomic sequences, which are in the form of deoxyribonucleic acid (DNA) and amino acids respectively, play a vital role in the structure, function and diversity of every living cell. As a result, various genomic and proteomic sequence processing

Genomic and proteomic sequences, which are in the form of deoxyribonucleic acid (DNA) and amino acids respectively, play a vital role in the structure, function and diversity of every living cell. As a result, various genomic and proteomic sequence processing methods have been proposed from diverse disciplines, including biology, chemistry, physics, computer science and electrical engineering. In particular, signal processing techniques were applied to the problems of sequence querying and alignment, that compare and classify regions of similarity in the sequences based on their composition. However, although current approaches obtain results that can be attributed to key biological properties, they require pre-processing and lack robustness to sequence repetitions. In addition, these approaches do not provide much support for efficiently querying sub-sequences, a process that is essential for tracking localized database matches. In this work, a query-based alignment method for biological sequences that maps sequences to time-domain waveforms before processing the waveforms for alignment in the time-frequency plane is first proposed. The mapping uses waveforms, such as time-domain Gaussian functions, with unique sequence representations in the time-frequency plane. The proposed alignment method employs a robust querying algorithm that utilizes a time-frequency signal expansion whose basis function is matched to the basic waveform in the mapped sequences. The resulting WAVEQuery approach is demonstrated for both DNA and protein sequences using the matching pursuit decomposition as the signal basis expansion. The alignment localization of WAVEQuery is specifically evaluated over repetitive database segments, and operable in real-time without pre-processing. It is demonstrated that WAVEQuery significantly outperforms the biological sequence alignment method BLAST for queries with repetitive segments for DNA sequences. A generalized version of the WAVEQuery approach with the metaplectic transform is also described for protein sequence structure prediction. For protein alignment, it is often necessary to not only compare the one-dimensional (1-D) primary sequence structure but also the secondary and tertiary three-dimensional (3-D) space structures. This is done after considering the conformations in the 3-D space due to the degrees of freedom of these structures. As a result, a novel directionality based 3-D waveform mapping for the 3-D protein structures is also proposed and it is used to compare protein structures using a matched filter approach. By incorporating a 3-D time axis, a highly-localized Gaussian-windowed chirp waveform is defined, and the amino acid information is mapped to the chirp parameters that are then directly used to obtain directionality in the 3-D space. This mapping is unique in that additional characteristic protein information such as hydrophobicity, that relates the sequence with the structure, can be added as another representation parameter. The additional parameter helps tracking similarities over local segments of the structure, this enabling classification of distantly related proteins which have partial structural similarities. This approach is successfully tested for pairwise alignments over full length structures, alignments over multiple structures to form a phylogenetic trees, and also alignments over local segments. Also, basic classification over protein structural classes using directional descriptors for the protein structure is performed.

Contributors

Agent

Created

Date Created
2011