Matching Items (71)
Filtering by

Clear all filters

151587-Thumbnail Image.png
Description
The rapid growth in the high-throughput technologies last few decades makes the manual processing of the generated data to be impracticable. Even worse, the machine learning and data mining techniques seemed to be paralyzed against these massive datasets. High-dimensionality is one of the most common challenges for machine learning and

The rapid growth in the high-throughput technologies last few decades makes the manual processing of the generated data to be impracticable. Even worse, the machine learning and data mining techniques seemed to be paralyzed against these massive datasets. High-dimensionality is one of the most common challenges for machine learning and data mining tasks. Feature selection aims to reduce dimensionality by selecting a small subset of the features that perform at least as good as the full feature set. Generally, the learning performance, e.g. classification accuracy, and algorithm complexity are used to measure the quality of the algorithm. Recently, the stability of feature selection algorithms has gained an increasing attention as a new indicator due to the necessity to select similar subsets of features each time when the algorithm is run on the same dataset even in the presence of a small amount of perturbation. In order to cure the selection stability issue, we should understand the cause of instability first. In this dissertation, we will investigate the causes of instability in high-dimensional datasets using well-known feature selection algorithms. As a result, we found that the stability mostly data-dependent. According to these findings, we propose a framework to improve selection stability by solving these main causes. In particular, we found that data noise greatly impacts the stability and the learning performance as well. So, we proposed to reduce it in order to improve both selection stability and learning performance. However, current noise reduction approaches are not able to distinguish between data noise and variation in samples from different classes. For this reason, we overcome this limitation by using Supervised noise reduction via Low Rank Matrix Approximation, SLRMA for short. The proposed framework has proved to be successful on different types of datasets with high-dimensionality, such as microarrays and images datasets. However, this framework cannot handle unlabeled, hence, we propose Local SVD to overcome this limitation.
ContributorsAlelyani, Salem (Author) / Liu, Huan (Thesis advisor) / Xue, Guoliang (Committee member) / Ye, Jieping (Committee member) / Zhao, Zheng (Committee member) / Arizona State University (Publisher)
Created2013
149454-Thumbnail Image.png
Description
Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the

Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the ability to represent goals in a non-deterministic domain, goals that change non-monotonically, and goals with preferences. This dissertation defines new goal specification languages by extending temporal logics to address these issues. First considered is the goal specification in non-deterministic domains, in which an agent following a policy leads to a set of paths. A logic is proposed to distinguish paths of the agent from all paths in the domain. In addition, to address the need of comparing policies for finding the best ones, a language capable of quantifying over policies is proposed. As policy structures of agents play an important role in goal specification, languages are also defined by considering different policy structures. Besides, after an agent is given an initial goal, the agent may change its expectations or the domain may change, thus goals that are previously specified may need to be further updated, revised, partially retracted, or even completely changed. Non-monotonic goal specification languages that can make these changes in an elaboration tolerant manner are needed. Two languages that rely on labeling sub-formulas and connecting multiple rules are developed to address non-monotonicity in goal specification. Also, agents may have preferential relations among sub-goals, and the preferential relations may change as agents achieve other sub-goals. By nesting a comparison operator with other temporal operators, a language with dynamic preferences is proposed. Various goals that cannot be expressed in other languages are expressed in the proposed languages. Finally, plans are given for some goals specified in the proposed languages.
ContributorsZhao, Jicheng (Author) / Baral, Chitta (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Lee, Joohyung (Committee member) / Lifschitz, Vladimir (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2010
168720-Thumbnail Image.png
Description
Artificial intelligence (AI) has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks of oppression and calamity. For example, social media platforms have knowingly and surreptitiously promoted harmful content, e.g., the rampant instances of disinformation and hate speech. Machine

Artificial intelligence (AI) has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks of oppression and calamity. For example, social media platforms have knowingly and surreptitiously promoted harmful content, e.g., the rampant instances of disinformation and hate speech. Machine learning algorithms designed for combating hate speech were also found biased against underrepresented and disadvantaged groups. In response, researchers and organizations have been working to publish principles and regulations for the responsible use of AI. However, these conceptual principles also need to be turned into actionable algorithms to materialize AI for good. The broad aim of my research is to design AI systems that responsibly serve users and develop applications with social impact. This dissertation seeks to develop the algorithmic solutions for Socially Responsible AI (SRAI), a systematic framework encompassing the responsible AI principles and algorithms, and the responsible use of AI. In particular, it first introduces an interdisciplinary definition of SRAI and the AI responsibility pyramid, in which four types of AI responsibilities are described. It then elucidates the purpose of SRAI: how to bridge from the conceptual definitions to responsible AI practice through the three human-centered operations -- to Protect and Inform users, and Prevent negative consequences. They are illustrated in the social media domain given that social media has revolutionized how people live but has also contributed to the rise of many societal issues. The three representative tasks for each dimension are cyberbullying detection, disinformation detection and dissemination, and unintended bias mitigation. The means of SRAI is to develop responsible AI algorithms. Many issues (e.g., discrimination and generalization) can arise when AI systems are trained to improve accuracy without knowing the underlying causal mechanism. Causal inference, therefore, is intrinsically related to understanding and resolving these challenging issues in AI. As a result, this dissertation also seeks to gain an in-depth understanding of AI by looking into the precise relationships between causes and effects. For illustration, it introduces a recent work that applies deep learning to estimating causal effects and shows that causal learning algorithms can outperform traditional methods.
ContributorsCheng, Lu (Author) / Liu, Huan (Thesis advisor) / Varshney, Kush R. (Committee member) / Silva, Yasin N. (Committee member) / Wu, Carole-Jean (Committee member) / Candan, Kasim S. (Committee member) / Arizona State University (Publisher)
Created2022
171809-Thumbnail Image.png
Description

Data integration involves the reconciliation of data from diverse data sources in order to obtain a unified data repository, upon which an end user such as a data analyst can run analytics sessions to explore the data and obtain useful insights. Supervised Machine Learning (ML) for data integration tasks such

Data integration involves the reconciliation of data from diverse data sources in order to obtain a unified data repository, upon which an end user such as a data analyst can run analytics sessions to explore the data and obtain useful insights. Supervised Machine Learning (ML) for data integration tasks such as ontology (schema) or entity (instance) matching requires several training examples in terms of manually curated, pre-labeled matching and non-matching schema concept or entity pairs which are hard to obtain. On similar lines, an analytics system without predictive capabilities about the impending workload can incur huge querying latencies, while leaving the onus of understanding the underlying database schema and writing a meaningful query at every step during a data exploration session on the user. In this dissertation, I will describe the human-in-the-loop Machine Learning (ML) systems that I have built towards data integration and predictive analytics. I alleviate the need for extensive prior labeling by utilizing active learning (AL) for dataintegration. In each AL iteration, I detect the unlabeled entity or schema concept pairs that would strengthen the ML classifier and selectively query the human oracle for such labels in a budgeted fashion. Thus, I make use of human assistance for ML-based data integration. On the other hand, when the human is an end user exploring data through Online Analytical Processing (OLAP) queries, my goal is to pro-actively assist the human by predicting the top-K next queries that s/he is likely to be interested in. I will describe my proposed SQL-predictor, a Business Intelligence (BI) query predictor and a geospatial query cardinality estimator with an emphasis on schema abstraction, query representation and how I adapt the ML models for these tasks. For each system, I will discuss the evaluation metrics and how the proposed systems compare to the state-of-the-art baselines on multiple datasets and query workloads.

ContributorsMeduri, Venkata Vamsikrishna (Author) / Sarwat, Mohamed (Thesis advisor) / Bryan, Chris (Committee member) / Liu, Huan (Committee member) / Ozcan, Fatma (Committee member) / Popa, Lucian (Committee member) / Arizona State University (Publisher)
Created2022
158434-Thumbnail Image.png
Description
Malicious hackers utilize the World Wide Web to share knowledge. Previous work has demonstrated that information mined from online hacking communities can be used as precursors to cyber-attacks. In a threatening scenario, where security alert systems are facing high false positive rates, understanding the people behind cyber incidents can hel

Malicious hackers utilize the World Wide Web to share knowledge. Previous work has demonstrated that information mined from online hacking communities can be used as precursors to cyber-attacks. In a threatening scenario, where security alert systems are facing high false positive rates, understanding the people behind cyber incidents can help reduce the risk of attacks. However, the rapidly evolving nature of those communities leads to limitations still largely unexplored, such as: who are the skilled and influential individuals forming those groups, how they self-organize along the lines of technical expertise, how ideas propagate within them, and which internal patterns can signal imminent cyber offensives? In this dissertation, I have studied four key parts of this complex problem set. Initially, I leverage content, social network, and seniority analysis to mine key-hackers on darkweb forums, identifying skilled and influential individuals who are likely to succeed in their cybercriminal goals. Next, as hackers often use Web platforms to advertise and recruit collaborators, I analyze how social influence contributes to user engagement online. On social media, two time constraints are proposed to extend standard influence measures, which increases their correlation with adoption probability and consequently improves hashtag adoption prediction. On darkweb forums, the prediction of where and when hackers will post a message in the near future is accomplished by analyzing their recurrent interactions with other hackers. After that, I demonstrate how vendors of malware and malicious exploits organically form hidden organizations on darkweb marketplaces, obtaining significant consistency across the vendors’ communities extracted using the similarity of their products in different networks. Finally, I predict imminent cyber-attacks correlating malicious hacking activity on darkweb forums with real-world cyber incidents, evidencing how social indicators are crucial for the performance of the proposed model. This research is a hybrid of social network analysis (SNA), machine learning (ML), evolutionary computation (EC), and temporal logic (TL), presenting expressive contributions to empower cyber defense.
ContributorsSantana Marin, Ericsson (Author) / Shakarian, Paulo (Thesis advisor) / Doupe, Adam (Committee member) / Liu, Huan (Committee member) / Ferrara, Emilio (Committee member) / Arizona State University (Publisher)
Created2020
158676-Thumbnail Image.png
Description
The rapid development in acquiring multimodal neuroimaging data provides opportunities to systematically characterize human brain structures and functions. For example, in the brain magnetic resonance imaging (MRI), a typical non-invasive imaging technique, different acquisition sequences (modalities) lead to the different descriptions of brain functional activities, or anatomical biomarkers. Nowadays, in

The rapid development in acquiring multimodal neuroimaging data provides opportunities to systematically characterize human brain structures and functions. For example, in the brain magnetic resonance imaging (MRI), a typical non-invasive imaging technique, different acquisition sequences (modalities) lead to the different descriptions of brain functional activities, or anatomical biomarkers. Nowadays, in addition to the traditional voxel-level analysis of images, there is a trend to process and investigate the cross-modality relationship in a high dimensional level of images, e.g. surfaces and networks.

In this study, I aim to achieve multimodal brain image fusion by referring to some intrinsic properties of data, e.g. geometry of embedding structures where the commonly used image features reside. Since the image features investigated in this study share an identical embedding space, i.e. either defined on a brain surface or brain atlas, where a graph structure is easy to define, it is straightforward to consider the mathematically meaningful properties of the shared structures from the geometry perspective.

I first introduce the background of multimodal fusion of brain image data and insights of geometric properties playing a potential role to link different modalities. Then, several proposed computational frameworks either using the solid and efficient geometric algorithms or current geometric deep learning models are be fully discussed. I show how these designed frameworks deal with distinct geometric properties respectively, and their applications in the real healthcare scenarios, e.g. to enhanced detections of fetal brain diseases or abnormal brain development.
ContributorsZhang, Wen (Author) / Wang, Yalin (Thesis advisor) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Braden, B. Blair (Committee member) / Arizona State University (Publisher)
Created2020
155912-Thumbnail Image.png
Description
Online social networks are the hubs of social activity in cyberspace, and using them to exchange knowledge, experiences, and opinions is common. In this work, an advanced topic modeling framework is designed to analyse complex longitudinal health information from social media with minimal human annotation, and Adverse Drug Events and

Online social networks are the hubs of social activity in cyberspace, and using them to exchange knowledge, experiences, and opinions is common. In this work, an advanced topic modeling framework is designed to analyse complex longitudinal health information from social media with minimal human annotation, and Adverse Drug Events and Reaction (ADR) information is extracted and automatically processed by using a biased topic modeling method. This framework improves and extends existing topic modelling algorithms that incorporate background knowledge. Using this approach, background knowledge such as ADR terms and other biomedical knowledge can be incorporated during the text mining process, with scores which indicate the presence of ADR being generated. A case control study has been performed on a data set of twitter timelines of women that announced their pregnancy, the goals of the study is to compare the ADR risk of medication usage from each medication category during the pregnancy.

In addition, to evaluate the prediction power of this approach, another important aspect of personalized medicine was addressed: the prediction of medication usage through the identification of risk groups. During the prediction process, the health information from Twitter timeline, such as diseases, symptoms, treatments, effects, and etc., is summarized by the topic modelling processes and the summarization results is used for prediction. Dimension reduction and topic similarity measurement are integrated into this framework for timeline classification and prediction. This work could be applied to provide guidelines for FDA drug risk categories. Currently, this process is done based on laboratory results and reported cases.

Finally, a multi-dimensional text data warehouse (MTD) to manage the output from the topic modelling is proposed. Some attempts have been also made to incorporate topic structure (ontology) and the MTD hierarchy. Results demonstrate that proposed methods show promise and this system represents a low-cost approach for drug safety early warning.
ContributorsYang, Jian (Author) / Gonzalez, Graciela (Thesis advisor) / Davulcu, Hasan (Thesis advisor) / Liu, Huan (Committee member) / Papotti, Paolo (Committee member) / Arizona State University (Publisher)
Created2017
157843-Thumbnail Image.png
Description
Social media is a medium that contains rich information which has been shared by many users every second every day. This information can be utilized for various outcomes such as understanding user behaviors, learning the effect of social media on a community, and developing a decision-making system based on the

Social media is a medium that contains rich information which has been shared by many users every second every day. This information can be utilized for various outcomes such as understanding user behaviors, learning the effect of social media on a community, and developing a decision-making system based on the information available. With the growing popularity of social networking sites, people can freely express their opinions and feelings which results in a tremendous amount of user-generated data. The rich amount of social media data has opened the path for researchers to study and understand the users’ behaviors and mental health conditions. Several studies have shown that social media provides a means to capture an individual state of mind. Given the social media data and related work in this field, this work studies the scope of users’ discussion among online mental health communities. In the first part of this dissertation, this work focuses on the role of social media on mental health among sexual abuse community. It employs natural language processing techniques to extract topics of responses, examine how diverse these topics are to answer research questions such as whether responses are limited to emotional support; if not, what other topics are; what the diversity of topics manifests; how online response differs from traditional response found in a physical world. To answer these questions, this work extracts Reddit posts on rape to understand the nature of user responses for this stigmatized topic. In the second part of this dissertation, this work expands to a broader range of online communities. In particular, it investigates the potential roles of social media on mental health among five major communities, i.e., trauma and abuse community, psychosis and anxiety community, compulsive disorders community, coping and therapy community, and mood disorders community. This work studies how people interact with each other in each of these communities and what these online forums provide a resource to users who seek help. To understand users’ behaviors, this work extracts Reddit posts on 52 related subcommunities and analyzes the linguistic behavior of each community. Experiments in this dissertation show that Reddit is a good medium for users with mental health issues to find related helpful resources. Another interesting observation is an interesting topic cluster from users’ posts which shows that discussion and communication among users help individuals to find proper resources for their problem. Moreover, results show that the anonymity of users in Reddit allows them to have discussions about different topics beyond social support such as financial and religious support.
ContributorsKamarudin, Nur Shazwani (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Sen, Arunabha (Committee member) / Hu, Xia (Committee member) / Arizona State University (Publisher)
Created2019
187374-Thumbnail Image.png
Description
Graph-structured data, ranging from social networks to financial transaction networks, from citation networks to gene regulatory networks, have been widely used for modeling a myriad of real-world systems. As a prevailing model architecture to model graph-structured data, graph neural networks (GNNs) has drawn much attention in both academic and

Graph-structured data, ranging from social networks to financial transaction networks, from citation networks to gene regulatory networks, have been widely used for modeling a myriad of real-world systems. As a prevailing model architecture to model graph-structured data, graph neural networks (GNNs) has drawn much attention in both academic and industrial communities in the past decades. Despite their success in different graph learning tasks, existing methods usually rely on learning from ``big'' data, requiring a large amount of labeled data for model training. However, it is common that real-world graphs are associated with ``small'' labeled data as data annotation and labeling on graphs is always time and resource-consuming. Therefore, it is imperative to investigate graph machine learning (Graph ML) with low-cost human supervision for low-resource settings where limited or even no labeled data is available. This dissertation investigates a new research field -- Data-Efficient Graph Learning, which aims to push forward the performance boundary of graph machine learning (Graph ML) models with different kinds of low-cost supervision signals. To achieve this goal, a series of studies are conducted for solving different data-efficient graph learning problems, including graph few-shot learning, graph weakly-supervised learning, and graph self-supervised learning.
ContributorsDing, Kaize (Author) / Liu, Huan (Thesis advisor) / Xue, Guoliang (Committee member) / Yang, Yezhou (Committee member) / Caverlee, James (Committee member) / Arizona State University (Publisher)
Created2023
187381-Thumbnail Image.png
Description
Artificial Intelligence (AI) systems have achieved outstanding performance and have been found to be better than humans at various tasks, such as sentiment analysis, and face recognition. However, the majority of these state-of-the-art AI systems use complex Deep Learning (DL) methods which present challenges for human experts to design and

Artificial Intelligence (AI) systems have achieved outstanding performance and have been found to be better than humans at various tasks, such as sentiment analysis, and face recognition. However, the majority of these state-of-the-art AI systems use complex Deep Learning (DL) methods which present challenges for human experts to design and evaluate such models with respect to privacy, fairness, and robustness. Recent examination of DL models reveals that representations may include information that could lead to privacy violations, unfairness, and robustness issues. This results in AI systems that are potentially untrustworthy from a socio-technical standpoint. Trustworthiness in AI is defined by a set of model properties such as non-discriminatory bias, protection of users’ sensitive attributes, and lawful decision-making. The characteristics of trustworthy AI can be grouped into three categories: Reliability, Resiliency, and Responsibility. Past research has shown that the successful integration of an AI model depends on its trustworthiness. Thus it is crucial for organizations and researchers to build trustworthy AI systems to facilitate the seamless integration and adoption of intelligent technologies. The main issue with existing AI systems is that they are primarily trained to improve technical measures such as accuracy on a specific task but are not considerate of socio-technical measures. The aim of this dissertation is to propose methods for improving the trustworthiness of AI systems through representation learning. DL models’ representations contain information about a given input and can be used for tasks such as detecting fake news on social media or predicting the sentiment of a review. The findings of this dissertation significantly expand the scope of trustworthy AI research and establish a new paradigm for modifying data representations to balance between properties of trustworthy AI. Specifically, this research investigates multiple techniques such as reinforcement learning for understanding trustworthiness in users’ privacy, fairness, and robustness in classification tasks like cyberbullying detection and fake news detection. Since most social measures in trustworthy AI cannot be used to fine-tune or train an AI model directly, the main contribution of this dissertation lies in using reinforcement learning to alter an AI system’s behavior based on non-differentiable social measures.
ContributorsMosallanezhad, Ahmadreza (Author) / Liu, Huan (Thesis advisor) / Mancenido, Michelle (Thesis advisor) / Doupe, Adam (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2023