Matching Items (50)

Filtering by

Clear all filters

151982-Thumbnail Image.png

Security and privacy in heterogeneous wireless and mobile networks: challenges and solutions

Description

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. First, we introduce a novel secure and loss-resilient code dissemination scheme for wireless sensor networks deployed in hostile and harsh environments. Second, we devise a novel scheme to enable mobile users to detect any inauthentic or unsound location-based top-k query result returned by an untrusted location-based service providers. Third, we develop a novel verifiable privacy-preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we present a suite of privacy-preserving profile matching protocols for proximity-based mobile social networking, which can support a wide range of matching metrics with different privacy levels. Last, we present a secure combination scheme for crowdsourcing-based cooperative spectrum sensing systems that can enable robust primary user detection even when malicious cognitive radio users constitute the majority.

Contributors

Agent

Created

Date Created
2013

152082-Thumbnail Image.png

Coping with selfish behavior in networks using game theory

Description

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other entities only when this form of coalition yields a better return. The interaction among multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. In this dissertation, we are interested in modeling, analyzing, addressing network problems caused by the selfish behavior of network entities. First, we study how the selfish behavior of network entities affects the system performance while users are competing for limited resource. For this resource allocation domain, we aim to study the selfish routing problem in networks with fair queuing on links, the relay assignment problem in cooperative networks, and the channel allocation problem in wireless networks. Another important aspect of this dissertation is the study of designing efficient mechanisms to incentivize network entities to achieve certain system objective. For this incentive mechanism domain, we aim to motivate wireless devices to serve as relays for cooperative communication, and to recruit smartphones for crowdsourcing. In addition, we apply different game theoretic approaches to problems in security and privacy domain. For this domain, we aim to analyze how a user could defend against a smart jammer, who can quickly learn about the user's transmission power. We also design mechanisms to encourage mobile phone users to participate in location privacy protection, in order to achieve k-anonymity.

Contributors

Agent

Created

Date Created
2013

152260-Thumbnail Image.png

Multipath mitigating correlation kernels

Description

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. Independent parameters provide a means to trade-off code tracking discriminant gain against multipath mitigation performance. The algorithm performance is characterized in terms of multipath phase error bias, phase error estimation variance, tracking range, tracking ambiguity and implementation complexity. The algorithm is suitable for modernized GNSS signals including Binary Phase Shift Keyed (BPSK) and a variety of Binary Offset Keyed (BOC) signals. The algorithm compensates for unbalanced code sequences to ensure a code tracking bias does not result from the use of asymmetric correlation kernels. The algorithm does not require explicit knowledge of the propagation channel model. Design recommendations for selecting the algorithm parameters to mitigate precorrelation filter distortion are also provided.

Contributors

Agent

Created

Date Created
2013

154022-Thumbnail Image.png

On code design for interference channels

Description

There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for

There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, irregular low-density-parity-check codes are exploited for a variety of cases and trellis based codes for short block length designs are performed.

Novel code design approaches are first studied for the two-user Gaussian multiple access channel. Exploiting Gaussian mixture approximation, new methods are proposed wherein the optimized codes are shown to improve upon the available designs and off-the-shelf point-to-point codes applied to the multiple access channel scenario. The code design is then examined for the two-user Gaussian interference channel implementing the Han-Kobayashi encoding and decoding strategy. Compared with the point-to-point codes, the newly designed codes consistently offer better performance. Parallel to this work, code design is explored for the discrete memoryless interference channels wherein the channel inputs and outputs are taken from a finite alphabet and it is demonstrated that the designed codes are superior to the single user codes used with time sharing. Finally, the code design principles are also investigated for the two-user Gaussian interference channel employing trellis-based codes with short block lengths for the case of strong and mixed interference levels.

Contributors

Agent

Created

Date Created
2015

151126-Thumbnail Image.png

Coding for insertion/deletion channels

Description

Insertion and deletion errors represent an important category of channel impairments. Despite their importance and much work over the years, channels with such impairments are far from being fully understood as they proved to be difficult to analyze. In this

Insertion and deletion errors represent an important category of channel impairments. Despite their importance and much work over the years, channels with such impairments are far from being fully understood as they proved to be difficult to analyze. In this dissertation, a promising coding scheme is investigated over independent and identically distributed (i.i.d.) insertion/deletion channels, i.e., interleaved concatenation of an outer low-density parity-check (LDPC) code with error-correction capabilities and an inner marker code for synchronization purposes. Marker code structures which offer the highest achievable rates are found with standard bit-level synchronization is performed. Then, to exploit the correlations in the likelihoods corresponding to different transmitted bits, a novel symbol-level synchronization algorithm that works on groups of consecutive bits is introduced. Extrinsic information transfer (EXIT) charts are also utilized to analyze the convergence behavior of the receiver, and to design LDPC codes with degree distributions matched to these channels. The next focus is on segmented deletion channels. It is first shown that such channels are information stable, and hence their channel capacity exists. Several upper and lower bounds are then introduced in an attempt to understand the channel capacity behavior. The asymptotic behavior of the channel capacity is also quantified when the average bit deletion rate is small. Further, maximum-a-posteriori (MAP) based synchronization algorithms are developed and specific LDPC codes are designed to match the channel characteristics. Finally, in addition to binary substitution errors, coding schemes and the corresponding detection algorithms are also studied for several other models with synchronization errors, including inter-symbol interference (ISI) channels, channels with multiple transmit/receive elements and multi-user communication systems.

Contributors

Agent

Created

Date Created
2012

151078-Thumbnail Image.png

Cognitive communications in white space: opportunistic scheduling, spectrum shaping and delay analysis

Description

A unique feature, yet a challenge, in cognitive radio (CR) networks is the user hierarchy: secondary users (SU) wishing for data transmission must defer in the presence of active primary users (PUs), whose priority to channel access is strictly higher.Under

A unique feature, yet a challenge, in cognitive radio (CR) networks is the user hierarchy: secondary users (SU) wishing for data transmission must defer in the presence of active primary users (PUs), whose priority to channel access is strictly higher.Under a common thread of characterizing and improving Quality of Service (QoS) for the SUs, this dissertation is progressively organized under two main thrusts: the first thrust focuses on SU's throughput by exploiting the underlying properties of the PU spectrum to perform effective scheduling algorithms; and the second thrust aims at another important QoS performance of the SUs, namely delay, subject to the impact of PUs' activities, and proposes enhancement and control mechanisms. More specifically, in the first thrust, opportunistic spectrum scheduling for SU is first considered by jointly exploiting the memory in PU's occupancy and channel fading. In particular, the underexplored scenario where PU occupancy presents a {long} temporal memory is taken into consideration. By casting the problem as a partially observable Markov decision process, a set of {multi-tier} tradeoffs are quantified and illustrated. Next, a spectrum shaping framework is proposed by leveraging network coding as a {spectrum shaper} on the PU's traffic. Such shaping effect brings in predictability of the primary spectrum, which is utilized by the SUs to carry out adaptive channel sensing by prioritizing channel access order, and hence significantly improve their throughput. On the other hand, such predictability can make wireless channels more susceptible to jamming attacks. As a result, caution must be taken in designing wireless systems to balance the throughput and the jamming-resistant capability. The second thrust turns attention to an equally important performance metric, i.e., delay performance. Specifically, queueing delay analysis is conducted for SUs employing random access over the PU channels. Fluid approximation is taken and Poisson driven stochastic differential equations are applied to characterize the moments of the SUs' steady-state queueing delay. Then, dynamic packet generation control mechanisms are developed to meet the given delay requirements for SUs.

Contributors

Agent

Created

Date Created
2012

151107-Thumbnail Image.png

Performance analysis of MIMO relay networks with beamforming

Description

This dissertation considers two different kinds of two-hop multiple-input multiple-output (MIMO) relay networks with beamforming (BF). First, "one-way" amplify-and-forward (AF) and decode-and-forward (DF) MIMO BF relay networks are considered, in which the relay amplifies or decodes the received signal from

This dissertation considers two different kinds of two-hop multiple-input multiple-output (MIMO) relay networks with beamforming (BF). First, "one-way" amplify-and-forward (AF) and decode-and-forward (DF) MIMO BF relay networks are considered, in which the relay amplifies or decodes the received signal from the source and forwards it to the destination, respectively, where all nodes beamform with multiple antennas to obtain gains in performance with reduced power consumption. A direct link from source to destination is included in performance analysis. Novel systematic upper-bounds and lower-bounds to average bit or symbol error rates (BERs or SERs) are proposed. Second, "two-way" AF MIMO BF relay networks are investigated, in which two sources exchange their data through a relay, to improve the spectral efficiency compared with one-way relay networks. Novel unified performance analysis is carried out for five different relaying schemes using two, three, and four time slots in sum-BER, the sum of two BERs at both sources, in two-way relay networks with and without direct links. For both kinds of relay networks, when any node is beamforming simultaneously to two nodes (i.e. from source to relay and destination in one-way relay networks, and from relay to both sources in two-way relay networks), the selection of the BF coefficients at a beamforming node becomes a challenging problem since it has to balance the needs of both receiving nodes. Although this "BF optimization" is performed for BER, SER, and sum-BER in this dissertation, the solution for optimal BF coefficients not only is difficult to implement, it also does not lend itself to performance analysis because the optimal BF coefficients cannot be expressed in closed-form. Therefore, the performance of optimal schemes through bounds, as well as suboptimal ones such as strong-path BF, which beamforms to the stronger path of two links based on their received signal-to-noise ratios (SNRs), is provided for BERs or SERs, for the first time. Since different channel state information (CSI) assumptions at the source, relay, and destination provide different error performance, various CSI assumptions are also considered.

Contributors

Agent

Created

Date Created
2012

151971-Thumbnail Image.png

Efficient Bayesian tracking of multiple sources of neural activity: algorithms and real-time FPGA implementation

Description

Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these

Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these algorithms onto hardware to enable real-time tracking. At the heart of these algorithms is particle filtering (PF), a sequential Monte Carlo technique used to estimate the unknown parameters of dynamic systems. First, we analyze the bottlenecks in existing PF algorithms, and we propose a new parallel PF (PPF) algorithm based on the independent Metropolis-Hastings (IMH) algorithm. We show that the proposed PPF-IMH algorithm improves the root mean-squared error (RMSE) estimation performance, and we demonstrate that a parallel implementation of the algorithm results in significant reduction in inter-processor communication. We apply our implementation on a Xilinx Virtex-5 field programmable gate array (FPGA) platform to demonstrate that, for a one-dimensional problem, the PPF-IMH architecture with four processing elements and 1,000 particles can process input samples at 170 kHz by using less than 5% FPGA resources. We also apply the proposed PPF-IMH to waveform-agile sensing to achieve real-time tracking of dynamic targets with high RMSE tracking performance. We next integrate the PPF-IMH algorithm to track the dynamic parameters in neural sensing when the number of neural dipole sources is known. We analyze the computational complexity of a PF based method and propose the use of multiple particle filtering (MPF) to reduce the complexity. We demonstrate the improved performance of MPF using numerical simulations with both synthetic and real data. We also propose an FPGA implementation of the MPF algorithm and show that the implementation supports real-time tracking. For the more realistic scenario of automatically estimating an unknown number of time-varying neural dipole sources, we propose a new approach based on the probability hypothesis density filtering (PHDF) algorithm. The PHDF is implemented using particle filtering (PF-PHDF), and it is applied in a closed-loop to first estimate the number of dipole sources and then their corresponding amplitude, location and orientation parameters. We demonstrate the improved tracking performance of the proposed PF-PHDF algorithm and map it onto a Xilinx Virtex-5 FPGA platform to show its real-time implementation potential. Finally, we propose the use of sensor scheduling and compressive sensing techniques to reduce the number of active sensors, and thus overall power consumption, of electroencephalography (EEG) systems. We propose an efficient sensor scheduling algorithm which adaptively configures EEG sensors at each measurement time interval to reduce the number of sensors needed for accurate tracking. We combine the sensor scheduling method with PF-PHDF and implement the system on an FPGA platform to achieve real-time tracking. We also investigate the sparsity of EEG signals and integrate compressive sensing with PF to estimate neural activity. Simulation results show that both sensor scheduling and compressive sensing based methods achieve comparable tracking performance with significantly reduced number of sensors.

Contributors

Agent

Created

Date Created
2013

151994-Thumbnail Image.png

A data analytics framework for smart grids: spatio-temporal wind power analysis and synchrophasor data mining

Description

Under the framework of intelligent management of power grids by leveraging advanced information, communication and control technologies, a primary objective of this study is to develop novel data mining and data processing schemes for several critical applications that can enhance

Under the framework of intelligent management of power grids by leveraging advanced information, communication and control technologies, a primary objective of this study is to develop novel data mining and data processing schemes for several critical applications that can enhance the reliability of power systems. Specifically, this study is broadly organized into the following two parts: I) spatio-temporal wind power analysis for wind generation forecast and integration, and II) data mining and information fusion of synchrophasor measurements toward secure power grids. Part I is centered around wind power generation forecast and integration. First, a spatio-temporal analysis approach for short-term wind farm generation forecasting is proposed. Specifically, using extensive measurement data from an actual wind farm, the probability distribution and the level crossing rate of wind farm generation are characterized using tools from graphical learning and time-series analysis. Built on these spatial and temporal characterizations, finite state Markov chain models are developed, and a point forecast of wind farm generation is derived using the Markov chains. Then, multi-timescale scheduling and dispatch with stochastic wind generation and opportunistic demand response is investigated. Part II focuses on incorporating the emerging synchrophasor technology into the security assessment and the post-disturbance fault diagnosis of power systems. First, a data-mining framework is developed for on-line dynamic security assessment by using adaptive ensemble decision tree learning of real-time synchrophasor measurements. Under this framework, novel on-line dynamic security assessment schemes are devised, aiming to handle various factors (including variations of operating conditions, forced system topology change, and loss of critical synchrophasor measurements) that can have significant impact on the performance of conventional data-mining based on-line DSA schemes. Then, in the context of post-disturbance analysis, fault detection and localization of line outage is investigated using a dependency graph approach. It is shown that a dependency graph for voltage phase angles can be built according to the interconnection structure of power system, and line outage events can be detected and localized through networked data fusion of the synchrophasor measurements collected from multiple locations of power grids. Along a more practical avenue, a decentralized networked data fusion scheme is proposed for efficient fault detection and localization.

Contributors

Agent

Created

Date Created
2013

151498-Thumbnail Image.png

Optimization for resource-constrained wireless networks

Description

Nowadays, wireless communications and networks have been widely used in our daily lives. One of the most important topics related to networking research is using optimization tools to improve the utilization of network resources. In this dissertation, we concentrate on

Nowadays, wireless communications and networks have been widely used in our daily lives. One of the most important topics related to networking research is using optimization tools to improve the utilization of network resources. In this dissertation, we concentrate on optimization for resource-constrained wireless networks, and study two fundamental resource-allocation problems: 1) distributed routing optimization and 2) anypath routing optimization. The study on the distributed routing optimization problem is composed of two main thrusts, targeted at understanding distributed routing and resource optimization for multihop wireless networks. The first thrust is dedicated to understanding the impact of full-duplex transmission on wireless network resource optimization. We propose two provably good distributed algorithms to optimize the resources in a full-duplex wireless network. We prove their optimality and also provide network status analysis using dual space information. The second thrust is dedicated to understanding the influence of network entity load constraints on network resource allocation and routing computation. We propose a provably good distributed algorithm to allocate wireless resources. In addition, we propose a new subgradient optimization framework, which can provide findgrained convergence, optimality, and dual space information at each iteration. This framework can provide a useful theoretical foundation for many networking optimization problems. The study on the anypath routing optimization problem is composed of two main thrusts. The first thrust is dedicated to understanding the computational complexity of multi-constrained anypath routing and designing approximate solutions. We prove that this problem is NP-hard when the number of constraints is larger than one. We present two polynomial time K-approximation algorithms. One is a centralized algorithm while the other one is a distributed algorithm. For the second thrust, we study directional anypath routing and present a cross-layer design of MAC and routing. For the MAC layer, we present a directional anycast MAC. For the routing layer, we propose two polynomial time routing algorithms to compute directional anypaths based on two antenna models, and prove their ptimality based on the packet delivery ratio metric.

Contributors

Agent

Created

Date Created
2013