Matching Items (86)
Filtering by

Clear all filters

151953-Thumbnail Image.png
Description
Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first

Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first part of the dissertation, a distributed detection scheme where the sensors transmit with constant modulus signals over a Gaussian multiple access channel is considered. The deflection coefficient of the proposed scheme is shown to depend on the characteristic function of the sensing noise, and the error exponent for the system is derived using large deviation theory. Optimization of the deflection coefficient and error exponent are considered with respect to a transmission phase parameter for a variety of sensing noise distributions including impulsive ones. The proposed scheme is also favorably compared with existing amplify-and-forward (AF) and detect-and-forward (DF) schemes. The effect of fading is shown to be detrimental to the detection performance and simulations are provided to corroborate the analytical results. The second part of the dissertation studies a distributed inference scheme which uses bounded transmission functions over a Gaussian multiple access channel. The conditions on the transmission functions under which consistent estimation and reliable detection are possible is characterized. For the distributed estimation problem, an estimation scheme that uses bounded transmission functions is proved to be strongly consistent provided that the variance of the noise samples are bounded and that the transmission function is one-to-one. The proposed estimation scheme is compared with the amplify and forward technique and its robustness to impulsive sensing noise distributions is highlighted. It is also shown that bounded transmissions suffer from inconsistent estimates if the sensing noise variance goes to infinity. For the distributed detection problem, similar results are obtained by studying the deflection coefficient. Simulations corroborate our analytical results. In the third part of this dissertation, the problem of estimating the average of samples distributed at the nodes of a sensor network is considered. A distributed average consensus algorithm in which every sensor transmits with bounded peak power is proposed. In the presence of communication noise, it is shown that the nodes reach consensus asymptotically to a finite random variable whose expectation is the desired sample average of the initial observations with a variance that depends on the step size of the algorithm and the variance of the communication noise. The asymptotic performance is characterized by deriving the asymptotic covariance matrix using results from stochastic approximation theory. It is shown that using bounded transmissions results in slower convergence compared to the linear consensus algorithm based on the Laplacian heuristic. Simulations corroborate our analytical findings. Finally, a robust distributed average consensus algorithm in which every sensor performs a nonlinear processing at the receiver is proposed. It is shown that non-linearity at the receiver nodes makes the algorithm robust to a wide range of channel noise distributions including the impulsive ones. It is shown that the nodes reach consensus asymptotically and similar results are obtained as in the case of transmit non-linearity. Simulations corroborate our analytical findings and highlight the robustness of the proposed algorithm.
ContributorsDasarathan, Sivaraman (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Reisslein, Martin (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151971-Thumbnail Image.png
Description
Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these algorithms onto hardware to enable real-time tracking. At the heart

Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these algorithms onto hardware to enable real-time tracking. At the heart of these algorithms is particle filtering (PF), a sequential Monte Carlo technique used to estimate the unknown parameters of dynamic systems. First, we analyze the bottlenecks in existing PF algorithms, and we propose a new parallel PF (PPF) algorithm based on the independent Metropolis-Hastings (IMH) algorithm. We show that the proposed PPF-IMH algorithm improves the root mean-squared error (RMSE) estimation performance, and we demonstrate that a parallel implementation of the algorithm results in significant reduction in inter-processor communication. We apply our implementation on a Xilinx Virtex-5 field programmable gate array (FPGA) platform to demonstrate that, for a one-dimensional problem, the PPF-IMH architecture with four processing elements and 1,000 particles can process input samples at 170 kHz by using less than 5% FPGA resources. We also apply the proposed PPF-IMH to waveform-agile sensing to achieve real-time tracking of dynamic targets with high RMSE tracking performance. We next integrate the PPF-IMH algorithm to track the dynamic parameters in neural sensing when the number of neural dipole sources is known. We analyze the computational complexity of a PF based method and propose the use of multiple particle filtering (MPF) to reduce the complexity. We demonstrate the improved performance of MPF using numerical simulations with both synthetic and real data. We also propose an FPGA implementation of the MPF algorithm and show that the implementation supports real-time tracking. For the more realistic scenario of automatically estimating an unknown number of time-varying neural dipole sources, we propose a new approach based on the probability hypothesis density filtering (PHDF) algorithm. The PHDF is implemented using particle filtering (PF-PHDF), and it is applied in a closed-loop to first estimate the number of dipole sources and then their corresponding amplitude, location and orientation parameters. We demonstrate the improved tracking performance of the proposed PF-PHDF algorithm and map it onto a Xilinx Virtex-5 FPGA platform to show its real-time implementation potential. Finally, we propose the use of sensor scheduling and compressive sensing techniques to reduce the number of active sensors, and thus overall power consumption, of electroencephalography (EEG) systems. We propose an efficient sensor scheduling algorithm which adaptively configures EEG sensors at each measurement time interval to reduce the number of sensors needed for accurate tracking. We combine the sensor scheduling method with PF-PHDF and implement the system on an FPGA platform to achieve real-time tracking. We also investigate the sparsity of EEG signals and integrate compressive sensing with PF to estimate neural activity. Simulation results show that both sensor scheduling and compressive sensing based methods achieve comparable tracking performance with significantly reduced number of sensors.
ContributorsMiao, Lifeng (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Thesis advisor) / Zhang, Junshan (Committee member) / Bliss, Daniel (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2013
151561-Thumbnail Image.png
Description
This dissertation presents a new hybrid fault current limiter (FCL) topology that is primarily intended to protect single-phase power equipment. It can however be extended to protect three phase systems but would need three devices to protect each individual phase. In comparison against the existing fault current limiter technology, the

This dissertation presents a new hybrid fault current limiter (FCL) topology that is primarily intended to protect single-phase power equipment. It can however be extended to protect three phase systems but would need three devices to protect each individual phase. In comparison against the existing fault current limiter technology, the salient fea-tures of the proposed topology are: a) provides variable impedance that provides a 50% reduction in prospective fault current; b) near instantaneous response time which is with-in the first half cycle (1-4 ms); c) the use of semiconductor switches as the commutating switch which produces reduced leakage current, reduced losses, improved reliability, and a faster switch time (ns-µs); d) zero losses in steady-state operation; e) use of a Neodym-ium (NdFeB) permanent magnet as the limiting impedance which reduces size, cost, weight, eliminates DC biasing and cooling costs; f) use of Pulse Width Modulation (PWM) to control the magnitude of the fault current to a user's desired level. g) experi-mental test system is developed and tested to prove the concepts of the proposed FCL. This dissertation presents the proposed topology and its working principle backed up with numerical verifications, simulation results, and hardware implementation results. Conclu-sions and future work are also presented.
ContributorsPrigmore, Jay (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
151455-Thumbnail Image.png
Description
Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving

Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focusses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and failure stresses. The developed model has been used to simulate impact damage in a composite beam and an airfoil structure. The model data was verified through active interrogation using piezoelectric sensors. The multiscale model was further extended to develop a coupled damage and wave attenuation model, which was used to study different damage states such as fiber-matrix debonding in composite structures with surface bonded piezoelectric sensors.
ContributorsMoncada, Albert (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Yekani Fard, Masoud (Committee member) / Arizona State University (Publisher)
Created2012
151465-Thumbnail Image.png
Description
Adaptive processing and classification of electrocardiogram (ECG) signals are important in eliminating the strenuous process of manually annotating ECG recordings for clinical use. Such algorithms require robust models whose parameters can adequately describe the ECG signals. Although different dynamic statistical models describing ECG signals currently exist, they depend considerably on

Adaptive processing and classification of electrocardiogram (ECG) signals are important in eliminating the strenuous process of manually annotating ECG recordings for clinical use. Such algorithms require robust models whose parameters can adequately describe the ECG signals. Although different dynamic statistical models describing ECG signals currently exist, they depend considerably on a priori information and user-specified model parameters. Also, ECG beat morphologies, which vary greatly across patients and disease states, cannot be uniquely characterized by a single model. In this work, sequential Bayesian based methods are used to appropriately model and adaptively select the corresponding model parameters of ECG signals. An adaptive framework based on a sequential Bayesian tracking method is proposed to adaptively select the cardiac parameters that minimize the estimation error, thus precluding the need for pre-processing. Simulations using real ECG data from the online Physionet database demonstrate the improvement in performance of the proposed algorithm in accurately estimating critical heart disease parameters. In addition, two new approaches to ECG modeling are presented using the interacting multiple model and the sequential Markov chain Monte Carlo technique with adaptive model selection. Both these methods can adaptively choose between different models for various ECG beat morphologies without requiring prior ECG information, as demonstrated by using real ECG signals. A supervised Bayesian maximum-likelihood (ML) based classifier uses the estimated model parameters to classify different types of cardiac arrhythmias. However, the non-availability of sufficient amounts of representative training data and the large inter-patient variability pose a challenge to the existing supervised learning algorithms, resulting in a poor classification performance. In addition, recently developed unsupervised learning methods require a priori knowledge on the number of diseases to cluster the ECG data, which often evolves over time. In order to address these issues, an adaptive learning ECG classification method that uses Dirichlet process Gaussian mixture models is proposed. This approach does not place any restriction on the number of disease classes, nor does it require any training data. This algorithm is adapted to be patient-specific by labeling or identifying the generated mixtures using the Bayesian ML method, assuming the availability of labeled training data.
ContributorsEdla, Shwetha Reddy (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Kovvali, Narayan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2012
151540-Thumbnail Image.png
Description
The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to be an effective solution to promote energy efficiency. In the urban en-vironment, the electricity, water and natural gas distribution networks are becoming in-creasingly interconnected with

The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to be an effective solution to promote energy efficiency. In the urban en-vironment, the electricity, water and natural gas distribution networks are becoming in-creasingly interconnected with the growing penetration of the CHP-based DG. Subse-quently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and sit-ing for a larger test bed with the given information of energy infrastructures. In this con-text, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The pro-posed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation per-formances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electrici-ty, gas, and water system models were developed individually and coupled by the devel-oped CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical output and recovered thermal output, which are affected by multiple factors and thus analyzed in different case studies. The results indicate that the designed typical gas system is capable of supplying sufficient natural gas for the DG normal operation, while the present water system cannot support the complete recovery of the exhaust heat from the DG units.
ContributorsZhang, Xianjun (Author) / Karady, George G. (Thesis advisor) / Ariaratnam, Samuel T. (Committee member) / Holbert, Keith E. (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2013
152307-Thumbnail Image.png
Description
Immunosignaturing is a medical test for assessing the health status of a patient by applying microarrays of random sequence peptides to determine the patient's immune fingerprint by associating antibodies from a biological sample to immune responses. The immunosignature measurements can potentially provide pre-symptomatic diagnosis for infectious diseases or detection of

Immunosignaturing is a medical test for assessing the health status of a patient by applying microarrays of random sequence peptides to determine the patient's immune fingerprint by associating antibodies from a biological sample to immune responses. The immunosignature measurements can potentially provide pre-symptomatic diagnosis for infectious diseases or detection of biological threats. Currently, traditional bioinformatics tools, such as data mining classification algorithms, are used to process the large amount of peptide microarray data. However, these methods generally require training data and do not adapt to changing immune conditions or additional patient information. This work proposes advanced processing techniques to improve the classification and identification of single and multiple underlying immune response states embedded in immunosignatures, making it possible to detect both known and previously unknown diseases or biothreat agents. Novel adaptive learning methodologies for un- supervised and semi-supervised clustering integrated with immunosignature feature extraction approaches are proposed. The techniques are based on extracting novel stochastic features from microarray binding intensities and use Dirichlet process Gaussian mixture models to adaptively cluster the immunosignatures in the feature space. This learning-while-clustering approach allows continuous discovery of antibody activity by adaptively detecting new disease states, with limited a priori disease or patient information. A beta process factor analysis model to determine underlying patient immune responses is also proposed to further improve the adaptive clustering performance by formatting new relationships between patients and antibody activity. In order to extend the clustering methods for diagnosing multiple states in a patient, the adaptive hierarchical Dirichlet process is integrated with modified beta process factor analysis latent feature modeling to identify relationships between patients and infectious agents. The use of Bayesian nonparametric adaptive learning techniques allows for further clustering if additional patient data is received. Significant improvements in feature identification and immune response clustering are demonstrated using samples from patients with different diseases.
ContributorsMalin, Anna (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Bliss, Daniel (Committee member) / Chakrabarti, Chaitali (Committee member) / Kovvali, Narayan (Committee member) / Lacroix, Zoé (Committee member) / Arizona State University (Publisher)
Created2013
152455-Thumbnail Image.png
Description
This dissertation introduces stochastic ordering of instantaneous channel powers of fading channels as a general method to compare the performance of a communication system over two different channels, even when a closed-form expression for the metric may not be available. Such a comparison is with respect to a variety of

This dissertation introduces stochastic ordering of instantaneous channel powers of fading channels as a general method to compare the performance of a communication system over two different channels, even when a closed-form expression for the metric may not be available. Such a comparison is with respect to a variety of performance metrics such as error rates, outage probability and ergodic capacity, which share common mathematical properties such as monotonicity, convexity or complete monotonicity. Complete monotonicity of a metric, such as the symbol error rate, in conjunction with the stochastic Laplace transform order between two fading channels implies the ordering of the two channels with respect to the metric. While it has been established previously that certain modulation schemes have convex symbol error rates, there is no study of the complete monotonicity of the same, which helps in establishing stronger channel ordering results. Toward this goal, the current research proves for the first time, that all 1-dimensional and 2-dimensional modulations have completely monotone symbol error rates. Furthermore, it is shown that the frequently used parametric fading distributions for modeling line of sight exhibit a monotonicity in the line of sight parameter with respect to the Laplace transform order. While the Laplace transform order can also be used to order fading distributions based on the ergodic capacity, there exist several distributions which are not Laplace transform ordered, although they have ordered ergodic capacities. To address this gap, a new stochastic order called the ergodic capacity order has been proposed herein, which can be used to compare channels based on the ergodic capacity. Using stochastic orders, average performance of systems involving multiple random variables are compared over two different channels. These systems include diversity combining schemes, relay networks, and signal detection over fading channels with non-Gaussian additive noise. This research also addresses the problem of unifying fading distributions. This unification is based on infinite divisibility, which subsumes almost all known fading distributions, and provides simplified expressions for performance metrics, in addition to enabling stochastic ordering.
ContributorsRajan, Adithya (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Bliss, Daniel (Committee member) / Kosut, Oliver (Committee member) / Arizona State University (Publisher)
Created2014
152344-Thumbnail Image.png
Description
Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of

Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring approach is based on predicting crack damage state dynamics and modeling crack length observations. Since fatigue loading of a structural component can change while in service, an interacting multiple model technique is employed to estimate probabilities of different loading modes and incorporate this information in the crack length estimation problem. For the observation model, features are obtained from regions of high signal energy in the time-frequency plane and modeled for each crack length damage condition. Although this observation model approach exhibits high classification accuracy, the resolution characteristics can change depending upon the extent of the damage. Therefore, several different transmission waveforms and receiver sensors are considered to create multiple modes for making observations of crack damage. Resolution characteristics of the different observation modes are assessed using a predicted mean squared error criterion and observations are obtained using the predicted, optimal observation modes based on these characteristics. Calculation of the predicted mean square error metric can be computationally intensive, especially if performed in real time, and an approximation method is proposed. With this approach, the real time computational burden is decreased significantly and the number of possible observation modes can be increased. Using sensor measurements from real experiments, the overall sequential Bayesian estimation approach, with the adaptive capability of varying the state dynamics and observation modes, is demonstrated for tracking crack damage.
ContributorsHuff, Daniel W (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Kovvali, Narayan (Committee member) / Chakrabarti, Chaitali (Committee member) / Chattopadhyay, Aditi (Committee member) / Arizona State University (Publisher)
Created2013
152908-Thumbnail Image.png
Description
A new photovoltaic (PV) array power converter circuit is presented. The salient features of this inverter are: transformerless topology, grounded PV array, and only film capacitors. The motivations are to reduce cost, eliminate leakage ground currents, and improve reliability. The use of Silicon Carbide (SiC) transistors is the key enabling

A new photovoltaic (PV) array power converter circuit is presented. The salient features of this inverter are: transformerless topology, grounded PV array, and only film capacitors. The motivations are to reduce cost, eliminate leakage ground currents, and improve reliability. The use of Silicon Carbide (SiC) transistors is the key enabling technology for this particular circuit to attain good efficiency.

Traditionally, grid connected PV inverters required a transformer for isolation and safety. The disadvantage of high frequency transformer based inverters is complexity and cost. Transformerless inverters have become more popular recently, although they can be challenging to implement because of possible high frequency currents through the PV array's stay capacitance to earth ground. Conventional PV inverters also typically utilize electrolytic capacitors for bulk power buffering. However such capacitors can be prone to decreased reliability.

The solution proposed here to solve these problems is a bi directional buck boost converter combined with half bridge inverters. This configuration enables grounding of the array's negative terminal and passive power decoupling with only film capacitors.

Several aspects of the proposed converter are discussed. First a literature review is presented on the issues to be addressed. The proposed circuit is then presented and examined in detail. This includes theory of operation, component selection, and control systems. An efficiency analysis is also conducted. Simulation results are then presented that show correct functionality. A hardware prototype is built and experiment results also prove the concept. Finally some further developments are mentioned.

As a summary of the research a new topology and control technique were developed. The resultant circuit is a high performance transformerless PV inverter with upwards of 97% efficiency.
ContributorsBreazeale, Lloyd C (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Tylavsky, Daniel (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2014