Matching Items (26)
Filtering by

Clear all filters

157106-Thumbnail Image.png
Description
In most diploid cells, autosomal genes are equally expressed from the paternal and maternal alleles resulting in biallelic expression. However, as an exception, there exists a small number of genes that show a pattern of monoallelic or biased-allele expression based on the allele’s parent-of-origin. This phenomenon is termed genomic imprinting

In most diploid cells, autosomal genes are equally expressed from the paternal and maternal alleles resulting in biallelic expression. However, as an exception, there exists a small number of genes that show a pattern of monoallelic or biased-allele expression based on the allele’s parent-of-origin. This phenomenon is termed genomic imprinting and is an evolutionary paradox. The best explanation for imprinting is David Haig's kinship theory, which hypothesizes that monoallelic gene expression is largely the result of evolutionary conflict between males and females over maternal involvement in their offspring. One previous RNAseq study has investigated the presence of parent-of-origin effects, or imprinting, in the parasitic jewel wasp Nasonia vitripennis (N. vitripennis) and its sister species Nasonia giraulti (N. giraulti) to test the predictions of kinship theory in a non-eusocial species for comparison to a eusocial one. In order to continue to tease apart the connection between social and eusocial Hymenoptera, this study proposed a similar RNAseq study that attempted to reproduce these results in unique samples of reciprocal F1 Nasonia hybrids. Building a pseudo N. giraulti reference genome, differences were observed when aligning RNAseq reads to a N. vitripennis reference genome compared to aligning reads to a pseudo N. giraulti reference. As well, no evidence for parent-of-origin or imprinting patterns in adult Nasonia were found. These results demonstrated a species-of-origin effect. Importantly, the study continued to build a repository of support with the aim to elucidate the mechanisms behind imprinting in an excellent epigenetic model species, as it can also help with understanding the phenomenon of imprinting in complex human diseases.
ContributorsUnderwood, Avery Elizabeth (Author) / Wilson, Melissa (Thesis advisor) / Buetow, Kenneth (Committee member) / Gile, Gillian (Committee member) / Arizona State University (Publisher)
Created2019
157282-Thumbnail Image.png
Description
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, diagnosed late in

the disease by a series of motor deficits that manifest over years or decades. It is characterized by degeneration of mid-brain dopaminergic neurons with a high prevalence of dementia associated with the spread of pathology to cortical regions. Patients exhibiting

Parkinson’s disease (PD) is a progressive neurodegenerative disorder, diagnosed late in

the disease by a series of motor deficits that manifest over years or decades. It is characterized by degeneration of mid-brain dopaminergic neurons with a high prevalence of dementia associated with the spread of pathology to cortical regions. Patients exhibiting symptoms have already undergone significant neuronal loss without chance for recovery. Analysis of disease specific changes in gene expression directly from human patients can uncover invaluable clues about a still unknown etiology, the potential of which grows exponentially as additional gene regulatory measures are questioned. Epigenetic mechanisms are emerging as important components of neurodegeneration, including PD; the extent to which methylation changes correlate with disease progression has not yet been reported. This collection of work aims to define multiple layers of PD that will work toward developing biomarkers that not only could improve diagnostic accuracy, but also push the boundaries of the disease detection timeline. I examined changes in gene expression, alternative splicing of those gene products, and the regulatory mechanism of DNA methylation in the Parkinson’s disease system, as well as the pathologically related Alzheimer’s disease (AD). I first used RNA sequencing (RNAseq) to evaluate differential gene expression and alternative splicing in the posterior cingulate cortex of patients with PD and PD with dementia (PDD). Next, I performed a longitudinal genome-wide methylation study surveying ~850K CpG methylation sites in whole blood from 189 PD patients and 191 control individuals obtained at both a baseline and at a follow-up visit after 2 years. I also considered how symptom management medications could affect the regulatory mechanism of DNA methylation. In the last chapter of this work, I intersected RNAseq and DNA methylation array datasets from whole blood patient samples for integrated differential analyses of both PD and AD. Changes in gene expression and DNA methylation reveal clear patterns of pathway dysregulation that can be seen across brain and blood, from one study to the next. I present a thorough survey of molecular changes occurring within the idiopathic Parkinson’s disease patient and propose candidate targets for potential molecular biomarkers.
ContributorsHenderson, Adrienne Rose (Author) / Huentelman, Matthew J (Thesis advisor) / Newbern, Jason (Thesis advisor) / Dunckley, Travis L (Committee member) / Jensen, Kendall (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2019
168280-Thumbnail Image.png
Description
Poxviruses such as monkeypox virus (MPXV) are emerging zoonotic diseases. Compared to MPXV, Vaccinia virus (VACV) has reduced pathogenicity in humans and can be used as a partially protective vaccine against MPXV. While most orthopoxviruses have E3 protein homologues with highly similar N-termini, the MPXV homologue, F3, has a start

Poxviruses such as monkeypox virus (MPXV) are emerging zoonotic diseases. Compared to MPXV, Vaccinia virus (VACV) has reduced pathogenicity in humans and can be used as a partially protective vaccine against MPXV. While most orthopoxviruses have E3 protein homologues with highly similar N-termini, the MPXV homologue, F3, has a start codon mutation leading to an N-terminal truncation of 37 amino acids. The VACV protein E3 consists of a dsRNA binding domain in its C-terminus which must be intact for pathogenicity in murine models and replication in cultured cells. The N-terminus of E3 contains a Z-form nucleic acid (ZNA) binding domain and is also required for pathogenicity in murine models. Poxviruses produce RNA transcripts that extend beyond the transcribed gene which can form double-stranded RNA (dsRNA). The innate immune system easily recognizes dsRNA through proteins such as protein kinase R (PKR). After comparing a vaccinia virus with a wild-type E3 protein (VACV WT) to one with an E3 N-terminal truncation of 37 amino acids (VACV E3Δ37N), phenotypic differences appeared in several cell lines. In HeLa cells and certain murine embryonic fibroblasts (MEFs), dsRNA recognition pathways such as PKR become activated during VACV E3Δ37N infections, unlike VACV WT. However, MPXV does not activate PKR in HeLa or MEF cells. Additional investigation determined that MPXV produces less dsRNA than VACV. VACV E3Δ37N was made more similar to MPXV by selecting mutants that produce less dsRNA. By producing less dsRNA, VACV E3Δ37N no longer activated PKR in HeLa or MEF cells, thus restoring the wild-type phenotype. Furthermore, in other cell lines such as L929 (also a murine fibroblast) VACV E3Δ37N, but not VACV WT infection leads to activation of DNA-dependent activator of IFN-regulatory factors (DAI) and induction of necroptotic cell death. The same low dsRNA mutants demonstrate that DAI activation and necroptotic induction is independent of classical dsRNA. Finally, investigations of spread in an animal model and replication in cell lines where both the PKR and DAI pathways are intact determined that inhibition of both pathways is required for VACV E3Δ37N to replicate.
ContributorsCotsmire, Samantha (Author) / Jacobs, Bertram L (Thesis advisor) / Varsani, Arvind (Committee member) / Hogue, Brenda (Committee member) / Haydel, Shelley (Committee member) / Arizona State University (Publisher)
Created2021
168582-Thumbnail Image.png
Description
Traditional public health strategies for assessing human behavior, exposure, and activity are considered resource-exhaustive, time-consuming, and expensive, warranting a need for alternative methods to enhance data acquisition and subsequent interventions. This dissertation critically evaluated the use of wastewater-based epidemiology (WBE) as an inclusive and non-invasive tool for conducting near real-time

Traditional public health strategies for assessing human behavior, exposure, and activity are considered resource-exhaustive, time-consuming, and expensive, warranting a need for alternative methods to enhance data acquisition and subsequent interventions. This dissertation critically evaluated the use of wastewater-based epidemiology (WBE) as an inclusive and non-invasive tool for conducting near real-time population health assessments. A rigorous literature review was performed to gauge the current landscape of WBE to monitor for biomarkers indicative of diet, as well as exposure to estrogen-mimicking endocrine disrupting (EED) chemicals via route of ingestion. Wastewater-derived measurements of phytoestrogens from August 2017 through July 2019 (n = 156 samples) in a small sewer catchment revealed seasonal patterns, with highest average per capita consumption rates in January through March of each year (2018: 7.0 ± 2.0 mg d-1; 2019: 8.2 ± 2.3 mg d-1) and statistically significant differences (p = 0.01) between fall and winter (3.4 ± 1.2 vs. 6.1 ± 2.9 mg d-1; p ≤ 0.01) and spring and summer (5.6 ± 2.1 vs. 3.4 ± 1.5 mg d-1; p ≤ 0.01). Additional investigations, including a human gut microbial composition analysis of community wastewater, were performed to support a methodological framework for future implementation of WBE to assess population-level dietary behavior. In response to the COVID-19 global pandemic, a high-frequency, high-resolution sample collection approach with public data sharing was implemented throughout the City of Tempe, Arizona, and analyzed for SARS-CoV-2 (E gene) from April 2020 through March 2021 (n = 1,556 samples). Results indicate early warning capability during the first wave (June 2020) compared to newly reported clinical cases (8.5 ± 2.1 days), later transitioning to a slight lagging indicator in December/January 2020-21 (-2.0 ± 1.4 days). A viral hotspot from within a larger catchment area was detected, prompting targeted interventions to successfully mitigate community spread; reinforcing the importance of sample collection within the sewer infrastructure. I conclude that by working in tandem with traditional approaches, WBE can enlighten a comprehensive understanding of population health, with methods and strategies implemented in this work recommended for future expansion to produce timely, actionable data in support of public health.
ContributorsBowes, Devin Ashley (Author) / Halden, Rolf U (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Conroy-Ben, Otakuye (Committee member) / Varsani, Arvind (Committee member) / Whisner, Corrie (Committee member) / Arizona State University (Publisher)
Created2022
187692-Thumbnail Image.png
Description
Mycobacterium leprae, the causative agent of Hansen’s disease (leprosy), has plagued humans and other animal species for millennia and remains of concern to public health throughout the world today. Recent research into the expanded use of medical tissues preserved as formalin-fixed, paraffin-embedded samples (FFPE), opened the door for the study

Mycobacterium leprae, the causative agent of Hansen’s disease (leprosy), has plagued humans and other animal species for millennia and remains of concern to public health throughout the world today. Recent research into the expanded use of medical tissues preserved as formalin-fixed, paraffin-embedded samples (FFPE), opened the door for the study of M. leprae DNA from preserved skin samples. However, problems persist with damage to the DNA including fragmentation and cross linkage. This study evaluated two methods commonly used for the recovery of host DNA from FFPE samples for their efficacy in extracting pathogen DNA (hot alkaline lysis protocol and QIAGEN QIAamp FFPE DNA kit). Twenty FFPE skin samples collected from 1995-2015 from human subjects in the Pacific Islands suffering from M. leprae infection, each exhibiting a range of bacillary loads, were analyzed to determine which extraction method was most successful in terms of ability to consistently yield reliable, robust traces of M. leprae infection. This study further examined these samples to understand the phylogeny of leprosy in the region, where gaps in the evolutionary history of M. leprae persist. DNA recovery from paired samples was similar using either method. However, by extending the incubation time of post-paraffin removal sample lysis, both protocols were more likely to yield positive traces of M. leprae, with this enhancement being especially evident in paucibacillary samples with low bacterial presence. The qPCR assay findings suggest that the hot alkaline procedure is most likely to yield positive identification of infection in these traditionally challenging samples.
ContributorsKing, Felicia Clarice (Author) / Stone, Anne (Thesis advisor) / Wilson, Melissa (Committee member) / Buetow, Ken (Committee member) / Arizona State University (Publisher)
Created2023
168416-Thumbnail Image.png
Description

Vaccines are one of the most effective ways of combating infectious diseases and developing vaccine platforms that can be used to produce vaccines can greatly assist in combating global public health threats. This dissertation focuses on the development and pre-clinical testing of vaccine platforms that are highly immunogenic, easily modifiable,

Vaccines are one of the most effective ways of combating infectious diseases and developing vaccine platforms that can be used to produce vaccines can greatly assist in combating global public health threats. This dissertation focuses on the development and pre-clinical testing of vaccine platforms that are highly immunogenic, easily modifiable, economically viable to produce, and stable. These criteria are met by the recombinant immune complex (RIC) universal vaccine platform when produced in plants. The RIC platform is modeled after naturally occurring immune complexes that form when an antibody, a component of the immune system that recognizes protein structures or sequences, binds to its specific antigen, a molecule that causes an immune response. In the RIC platform, a well-characterized antibody is linked via its heavy chain, to an antigen tagged with the antibody-specific epitope. The RIC antibody binds to the epitope tags on other RIC molecules and forms highly immunogenic complexes. My research has primarily focused on the optimization of the RIC platform. First, I altered the RIC platform to enable an N-terminal antigenic fusion instead of the previous C-terminal fusion strategy. This allowed the platform to be used with antigens that require an accessible N-terminus. A mouse immunization study with a model antigen showed that the fusion location, either N-terminal or C-terminal, did not impact the immune response. Next, I studied a synergistic response that was seen upon co-delivery of RIC with virus-like particles (VLP) and showed that the synergistic response could be produced with either N-terminal or C-terminal RIC co-delivered with VLP. Since RICs are inherently insoluble due to their ability to form complexes, I also examined ways to increase RIC solubility by characterizing a panel of modified RICs and antibody-fusions. The outcome was the identification of a modified RIC that had increased solubility while retaining high immunogenicity. Finally, I modified the RIC platform to contain multiple antigenic insertion sites and explored the use of bioinformatic tools to guide the design of a broadly protective vaccine.

ContributorsPardhe, Mary (Author) / Mason, Hugh S (Thesis advisor) / Chen, Qiang (Committee member) / Mor, Tsafrir (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2021
187353-Thumbnail Image.png
Description
Despite the prevalence of coyotes (Canis latrans) little is known about the viruses associated with this species. To assess the extent of viral research that has been conducted on coyotes, a literature review was performed. Over the last six decades, there have been many viruses that have been identified infecting

Despite the prevalence of coyotes (Canis latrans) little is known about the viruses associated with this species. To assess the extent of viral research that has been conducted on coyotes, a literature review was performed. Over the last six decades, there have been many viruses that have been identified infecting coyotes. The pathology of some cases implies that infection is rare and lethal while others have been demonstrated to be endemic to coyotes. In addition, the majority of the prior analyses were done through serological assays that were limited to investigating target viruses. To help expand what is known about coyote-virus dynamics, viral assays were conducted on coyote scat. The samples were collected as part of transects established along the Salt River near Phoenix, Arizona, United States (USA). The recovered viral genomes were clustered with other deoxynucleic acid (DNA) viruses and analyzed to determine phylogeny and genetic identity. From the recovered viral genomes, there are two novel circoviruses, one novel naryavirus, five unclassified cressdnaviruses, and two previously identified species of anelloviruses from the Wawtorquevirus genus. For these viruses, new phylogenies for their groups and pairwise identity plots have been generated. These figures give insight into the potential hosts and the evolutionary history. In the case of the anelloviruses, they likely derived from a wood rat (Neotoma) host, given the anellovirus family’s host specificity and its similarity to another viral genome derived from a wood rat in Arizona, USA. Of the recovered circovirus genomes, one is associated with a viral isolate collected from a dust sample in Arizona, USA. The second circovirus species identified is within a clade that consists of rodent associated circoviruses and canine circovirus. Other recovered genomes expand clusters of unclassified cressdnaviruses. The recovered genomes support further genomic analysis. These findings help support the notion that there is a wealth of viral information to be identified from animals like coyotes. By understanding the viruses that coyotes are associated with, it is possible to better understand the viral impact on the urban environment, domesticated animals, and wildlife in general.
ContributorsHess, Savage Cree (Author) / Varsani, Arvind (Thesis advisor) / Kraberger, Simona (Committee member) / Upham, Nathan S (Committee member) / Arizona State University (Publisher)
Created2023
187397-Thumbnail Image.png
DescriptionA
ContributorsLund, Michael (Author) / Varsani, Arvind (Thesis advisor) / Upham, Nathan (Committee member) / Harris, Robin (Committee member) / Arizona State University (Publisher)
Created2023
187406-Thumbnail Image.png
Description
Life history theory offers a powerful framework to understand evolutionary selection pressures and explain how adaptive strategies use the life history trade-off and differences in cancer defenses across the tree of life. There is often some cost to the phenotype of therapeutic resistance and so sensitive cells can usually outcompete

Life history theory offers a powerful framework to understand evolutionary selection pressures and explain how adaptive strategies use the life history trade-off and differences in cancer defenses across the tree of life. There is often some cost to the phenotype of therapeutic resistance and so sensitive cells can usually outcompete resistant cells in the absence of therapy. Adaptive therapy, as an evolutionary and ecologically inspired paradigm in cancer treatment, uses the competitive interactions between drug-sensitive, and drug-resistant subclones to help suppress the drug-resistant subclones. However, there remain several open challenges in designing adaptive therapies, particularly in extending this approach to multiple drugs. Furthermore, the immune system also plays a role in preventing and controlling cancers. Life history theory may help to explain the variation in immune cell levels across the tree of life that likely contributes to variance in cancer prevalence across vertebrates. However, this has not been previously explored. This work 1) describes resistance management for cancer, lessons cancer researchers learned from farmers since adaptive evolutionary strategies were inspired by the management of resistance in agricultural pests, 2) demonstrates how adaptive therapy protocols work with gemcitabine and capecitabine in a hormone-refractory breast cancer mouse model, 3) tests for a relationship between life history strategy and the immune system, and tests for an effect of immune cells levels on cancer prevalence across vertebrates, and 4) provides a novel approach to improve the teaching of life history theory. This work applies lessons that cancer researchers learned from pest managers, who face similar issues of pesticide resistance, to control cancers. It represents the first time that multiple drugs have been used in adaptive therapy for cancer, and the first time that adaptive therapy has been used on hormone-refractory breast cancer. I found that this evolutionary approach to cancer treatment prolongs survival in mice and also selects for the slow life history strategy. I also discovered that species with slower life histories have higher concentrations of white blood cells and a higher percentage of heterophils, monocytes and segmented neutrophils. Moreover, larger platelet size is associated with higher cancer prevalence in mammals.
ContributorsSeyedi, Seyedehsareh (Author) / Maley, Carlo (Thesis advisor) / Blattman, Joseph (Committee member) / Anderson, Karen (Committee member) / Wilson, Melissa (Committee member) / Huijben, Silvie (Committee member) / Gatenby, Robert (Committee member) / Arizona State University (Publisher)
Created2023
187460-Thumbnail Image.png
Description
Precise modulation of gene expression is essential for proper tissue and cell-specific differentiation and function. Multiple distinct post-transcriptional regulatory mechanisms, such as miRNA (microRNA)-based regulation and alternative polyadenylation (APA), are an intrinsic part of this modulation and orchestrate intricate pathways to achieve and maintain balanced gene expression.MiRNA-based regulation and APA

Precise modulation of gene expression is essential for proper tissue and cell-specific differentiation and function. Multiple distinct post-transcriptional regulatory mechanisms, such as miRNA (microRNA)-based regulation and alternative polyadenylation (APA), are an intrinsic part of this modulation and orchestrate intricate pathways to achieve and maintain balanced gene expression.MiRNA-based regulation and APA function through sequence motifs located in the 3’ Untranslated Region (3’UTR) of mRNA transcripts. MiRNAs are short (~22 nt) non-coding RNA molecules that bind target sequences within the 3’UTR of an mRNA transcript, inhibiting its translation or promoting its degradation. APA occurs during RNA transcription termination and leads to the preparation of mature mRNAs with different 3’UTR lengths, allowing shorter 3’UTRs to bypass miRNA regulation. In addition to these two post-transcriptional forms of regulation, co-transcriptional mechanisms such as alternative RNA splicing, which produces distinct gene products from a precursor mRNA, are also important in controlling gene expression. While miRNA-based regulation, APA, and alternative RNA splicing are important regulatory mechanisms, there is a lack of comprehensive understanding of how they interact and communicate with each other. This thesis studies these three forms of gene regulation in the nematode C. elegans, with the goal of extracting rules and mechanisms used by each of them in development to establish and maintain somatic tissue identity. After isolating miRNA targets in multiple C. elegans somatic tissues, it was found that miRNAs can modulate the abundance of hnRNPs and SR proteins, which are known to control alternative RNA splicing in a dosage-dependent manner.To identify tissue-specific miRNAs, a nuclear fluorescent cell sorting (FACS)-based methodology named Nuc-Seq, was developed to isolate and sequence tissue-specific miRNAs from body muscle tissue. Nuc-Seq identified 2,848 muscle-specific protein-coding genes and 16 body muscle-specific miRNAs. This data was used to develop a high-quality body muscle-specific miRNA-APA Interactome which allows studies in regulatory processes in detail. Taken together, this work highlights some of the complexity of pre- and post-transcriptional gene regulation and sheds light on how miRNA-based regulation, APA, and alternative RNA splicing are interconnected and are responsible for the establishment and maintenance of tissue identity.
ContributorsSchorr, Anna L (Author) / Mangone, Marco (Thesis advisor) / Harris, Robin (Committee member) / Sharma, Shalini (Committee member) / Varsani, Arvind (Committee member) / Arizona State University (Publisher)
Created2023