Matching Items (110)

Filtering by

Clear all filters

150125-Thumbnail Image.png
Description

Damage assessment and residual useful life estimation (RULE) are essential for aerospace, civil and naval structures. Structural Health Monitoring (SHM) attempts to automate the process of damage detection and identification. Multiscale modeling is a key element in SHM. It not only provides important information on the physics of failure, such

Damage assessment and residual useful life estimation (RULE) are essential for aerospace, civil and naval structures. Structural Health Monitoring (SHM) attempts to automate the process of damage detection and identification. Multiscale modeling is a key element in SHM. It not only provides important information on the physics of failure, such as damage initiation and growth, the output can be used as "virtual sensing" data for detection and prognosis. The current research is part of an ongoing multidisciplinary effort to develop an integrated SHM framework for metallic aerospace components. In this thesis a multiscale model has been developed by bridging the relevant length scales, micro, meso and macro (or structural scale). Micro structural representations obtained from material characterization studies are used to define the length scales and to capture the size and orientation of the grains at the micro level. Parametric studies are conducted to estimate material parameters used in this constitutive model. Numerical and experimental simulations are performed to investigate the effects of Representative Volume Element (RVE) size, defect area fraction and distribution. A multiscale damage criterion accounting for crystal orientation effect is developed. This criterion is applied for fatigue crack initial stage prediction. A damage evolution rule based on strain energy density is modified to incorporate crystal plasticity at the microscale (local). Optimization approaches are used to calculate global damage index which is used for the RVE failure prediciton. Potential cracking directions are provided from the damage criterion simultaneously. A wave propagation model is incorporated with the damage model to detect changes in sensing signals due to plastic deformation and damage growth.

ContributorsLuo, Chuntao (Author) / Chattopadhyay, Aditi (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Jiang, Hanqing (Committee member) / Dai, Lenore (Committee member) / Li, Jian (Committee member) / Arizona State University (Publisher)
Created2011
150175-Thumbnail Image.png
Description

The tracking of multiple targets becomes more challenging in complex environments due to the additional degrees of nonlinearity in the measurement model. In urban terrain, for example, there are multiple reflection path measurements that need to be exploited since line-of-sight observations are not always available. Multiple target tracking in urban

The tracking of multiple targets becomes more challenging in complex environments due to the additional degrees of nonlinearity in the measurement model. In urban terrain, for example, there are multiple reflection path measurements that need to be exploited since line-of-sight observations are not always available. Multiple target tracking in urban terrain environments is traditionally implemented using sequential Monte Carlo filtering algorithms and data association techniques. However, data association techniques can be computationally intensive and require very strict conditions for efficient performance. This thesis investigates the probability hypothesis density (PHD) method for tracking multiple targets in urban environments. The PHD is based on the theory of random finite sets and it is implemented using the particle filter. Unlike data association methods, it can be used to estimate the number of targets as well as their corresponding tracks. A modified maximum-likelihood version of the PHD (MPHD) is proposed to automatically and adaptively estimate the measurement types available at each time step. Specifically, the MPHD allows measurement-to-nonlinearity associations such that the best matched measurement can be used at each time step, resulting in improved radar coverage and scene visibility. Numerical simulations demonstrate the effectiveness of the MPHD in improving tracking performance, both for tracking multiple targets and targets in clutter.

ContributorsZhou, Meng (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2011
150930-Thumbnail Image.png
Description

In this thesis, an integrated waveform-agile multi-modal tracking-beforedetect sensing system is investigated and the performance is evaluated using an experimental platform. The sensing system of adapting asymmetric multi-modal sensing operation platforms using radio frequency (RF) radar and electro-optical (EO) sensors allows for integration of complementary information from different sensors. However,

In this thesis, an integrated waveform-agile multi-modal tracking-beforedetect sensing system is investigated and the performance is evaluated using an experimental platform. The sensing system of adapting asymmetric multi-modal sensing operation platforms using radio frequency (RF) radar and electro-optical (EO) sensors allows for integration of complementary information from different sensors. However, there are many challenges to overcome, including tracking low signal-to-noise ratio (SNR) targets, waveform configurations that can optimize tracking performance and statistically dependent measurements. Address some of these challenges, a particle filter (PF) based recursive waveformagile track-before-detect (TBD) algorithm is developed to avoid information loss caused by conventional detection under low SNR environments. Furthermore, a waveform-agile selection technique is integrated into the PF-TBD to allow for adaptive waveform configurations. The embedded exponential family (EEF) approach is used to approximate distributions of parameters of dependent RF and EO measurements and to further improve target detection rate and tracking performance. The performance of the integrated algorithm is evaluated using real data from three experimental scenarios.

ContributorsLiu, Shubo (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Duman, Tolga (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2012
151093-Thumbnail Image.png
Description

This thesis aims to investigate the capacity and bit error rate (BER) performance of multi-user diversity systems with random number of users and considers its application to cognitive radio systems. Ergodic capacity, normalized capacity, outage capacity, and average bit error rate metrics are studied. It has been found that the

This thesis aims to investigate the capacity and bit error rate (BER) performance of multi-user diversity systems with random number of users and considers its application to cognitive radio systems. Ergodic capacity, normalized capacity, outage capacity, and average bit error rate metrics are studied. It has been found that the randomization of the number of users will reduce the ergodic capacity. A stochastic ordering framework is adopted to order user distributions, for example, Laplace transform ordering. The ergodic capacity under different user distributions will follow their corresponding Laplace transform order. The scaling law of ergodic capacity with mean number of users under Poisson and negative binomial user distributions are studied for large mean number of users and these two random distributions are ordered in Laplace transform ordering sense. The ergodic capacity per user is defined and is shown to increase when the total number of users is randomized, which is the opposite to the case of unnormalized ergodic capacity metric. Outage probability under slow fading is also considered and shown to decrease when the total number of users is randomized. The bit error rate (BER) in a general multi-user diversity system has a completely monotonic derivative, which implies that, according to the Jensen's inequality, the randomization of the total number of users will decrease the average BER performance. The special case of Poisson number of users and Rayleigh fading is studied. Combining with the knowledge of regular variation, the average BER is shown to achieve tightness in the Jensen's inequality. This is followed by the extension to the negative binomial number of users, for which the BER is derived and shown to be decreasing in the number of users. A single primary user cognitive radio system with multi-user diversity at the secondary users is proposed. Comparing to the general multi-user diversity system, there exists an interference constraint between secondary and primary users, which is independent of the secondary users' transmission. The secondary user with high- est transmitted SNR which also satisfies the interference constraint is selected to communicate. The active number of secondary users is a binomial random variable. This is then followed by a derivation of the scaling law of the ergodic capacity with mean number of users and the closed form expression of average BER under this situation. The ergodic capacity under binomial user distribution is shown to outperform the Poisson case. Monte-Carlo simulations are used to supplement our analytical results and compare the performance of different user distributions.

ContributorsZeng, Ruochen (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Duman, Tolga (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2012
150798-Thumbnail Image.png
Description

Structural health management (SHM) is emerging as a vital methodology to help engineers improve the safety and maintainability of critical structures. SHM systems are designed to reliably monitor and test the health and performance of structures in aerospace, civil, and mechanical engineering applications. SHM combines multidisciplinary technologies including sensing, signal

Structural health management (SHM) is emerging as a vital methodology to help engineers improve the safety and maintainability of critical structures. SHM systems are designed to reliably monitor and test the health and performance of structures in aerospace, civil, and mechanical engineering applications. SHM combines multidisciplinary technologies including sensing, signal processing, pattern recognition, data mining, high fidelity probabilistic progressive damage models, physics based damage models, and regression analysis. Due to the wide application of carbon fiber reinforced composites and their multiscale failure mechanisms, it is necessary to emphasize the research of SHM on composite structures. This research develops a comprehensive framework for the damage detection, localization, quantification, and prediction of the remaining useful life of complex composite structures. To interrogate a composite structure, guided wave propagation is applied to thin structures such as beams and plates. Piezoelectric transducers are selected because of their versatility, which allows them to be used as sensors and actuators. Feature extraction from guided wave signals is critical to demonstrate the presence of damage and estimate the damage locations. Advanced signal processing techniques are employed to extract robust features and information. To provide a better estimate of the damage for accurate life estimation, probabilistic regression analysis is used to obtain a prediction model for the prognosis of complex structures subject to fatigue loading. Special efforts have been applied to the extension of SHM techniques on aerospace and spacecraft structures, such as UAV composite wings and deployable composite boom structures. Necessary modifications of the developed SHM techniques were conducted to meet the unique requirements of the aerospace structures. The developed SHM algorithms are able to accurately detect and quantify impact damages as well as matrix cracking introduced.

ContributorsLiu, Yingtao (Author) / Chattopadhyay, Aditi (Thesis advisor) / Rajadas, John (Committee member) / Dai, Lenore (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2012
150830-Thumbnail Image.png
Description

Research on developing new algorithms to improve information on brain functionality and structure is ongoing. Studying neural activity through dipole source localization with electroencephalography (EEG) and magnetoencephalography (MEG) sensor measurements can lead to diagnosis and treatment of a brain disorder and can also identify the area of the brain from

Research on developing new algorithms to improve information on brain functionality and structure is ongoing. Studying neural activity through dipole source localization with electroencephalography (EEG) and magnetoencephalography (MEG) sensor measurements can lead to diagnosis and treatment of a brain disorder and can also identify the area of the brain from where the disorder has originated. Designing advanced localization algorithms that can adapt to environmental changes is considered a significant shift from manual diagnosis which is based on the knowledge and observation of the doctor, to an adaptive and improved brain disorder diagnosis as these algorithms can track activities that might not be noticed by the human eye. An important consideration of these localization algorithms, however, is to try and minimize the overall power consumption in order to improve the study and treatment of brain disorders. This thesis considers the problem of estimating dynamic parameters of neural dipole sources while minimizing the system's overall power consumption; this is achieved by minimizing the number of EEG/MEG measurements sensors without a loss in estimation performance accuracy. As the EEG/MEG measurements models are related non-linearity to the dipole source locations and moments, these dynamic parameters can be estimated using sequential Monte Carlo methods such as particle filtering. Due to the large number of sensors required to record EEG/MEG Measurements for use in the particle filter, over long period recordings, a large amounts of power is required for storage and transmission. In order to reduce the overall power consumption, two methods are proposed. The first method used the predicted mean square estimation error as the performance metric under the constraint of a maximum power consumption. The performance metric of the second method uses the distance between the location of the sensors and the location estimate of the dipole source at the previous time step; this sensor scheduling scheme results in maximizing the overall signal-to-noise ratio. The performance of both methods is demonstrated using simulated data, and both methods show that they can provide good estimation results with significant reduction in the number of activated sensors at each time step.

ContributorsMichael, Stefanos (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2012
150833-Thumbnail Image.png
Description

Composite materials are increasingly being used in aircraft, automobiles, and other applications due to their high strength to weight and stiffness to weight ratios. However, the presence of damage, such as delamination or matrix cracks, can significantly compromise the performance of these materials and result in premature failure. Structural components

Composite materials are increasingly being used in aircraft, automobiles, and other applications due to their high strength to weight and stiffness to weight ratios. However, the presence of damage, such as delamination or matrix cracks, can significantly compromise the performance of these materials and result in premature failure. Structural components are often manually inspected to detect the presence of damage. This technique, known as schedule based maintenance, however, is expensive, time-consuming, and often limited to easily accessible structural elements. Therefore, there is an increased demand for robust and efficient Structural Health Monitoring (SHM) techniques that can be used for Condition Based Monitoring, which is the method in which structural components are inspected based upon damage metrics as opposed to flight hours. SHM relies on in situ frameworks for detecting early signs of damage in exposed and unexposed structural elements, offering not only reduced number of schedule based inspections, but also providing better useful life estimates. SHM frameworks require the development of different sensing technologies, algorithms, and procedures to detect, localize, quantify, characterize, as well as assess overall damage in aerospace structures so that strong estimations in the remaining useful life can be determined. The use of piezoelectric transducers along with guided Lamb waves is a method that has received considerable attention due to the weight, cost, and function of the systems based on these elements. The research in this thesis investigates the ability of Lamb waves to detect damage in feature dense anisotropic composite panels. Most current research negates the effects of experimental variability by performing tests on structurally simple isotropic plates that are used as a baseline and damaged specimen. However, in actual applications, variability cannot be negated, and therefore there is a need to research the effects of complex sample geometries, environmental operating conditions, and the effects of variability in material properties. This research is based on experiments conducted on a single blade-stiffened anisotropic composite panel that localizes delamination damage caused by impact. The overall goal was to utilize a correlative approach that used only the damage feature produced by the delamination as the damage index. This approach was adopted because it offered a simplistic way to determine the existence and location of damage without having to conduct a more complex wave propagation analysis or having to take into account the geometric complexities of the test specimen. Results showed that even in a complex structure, if the damage feature can be extracted and measured, then an appropriate damage index can be associated to it and the location of the damage can be inferred using a dense sensor array. The second experiment presented in this research studies the effects of temperature on damage detection when using one test specimen for a benchmark data set and another for damage data collection. This expands the previous experiment into exploring not only the effects of variable temperature, but also the effects of high experimental variability. Results from this work show that the damage feature in the data is not only extractable at higher temperatures, but that the data from one panel at one temperature can be directly compared to another panel at another temperature for baseline comparison due to linearity of the collected data.

ContributorsVizzini, Anthony James, II (Author) / Chattopadhyay, Aditi (Thesis advisor) / Fard, Masoud (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2012
152307-Thumbnail Image.png
Description

Immunosignaturing is a medical test for assessing the health status of a patient by applying microarrays of random sequence peptides to determine the patient's immune fingerprint by associating antibodies from a biological sample to immune responses. The immunosignature measurements can potentially provide pre-symptomatic diagnosis for infectious diseases or detection of

Immunosignaturing is a medical test for assessing the health status of a patient by applying microarrays of random sequence peptides to determine the patient's immune fingerprint by associating antibodies from a biological sample to immune responses. The immunosignature measurements can potentially provide pre-symptomatic diagnosis for infectious diseases or detection of biological threats. Currently, traditional bioinformatics tools, such as data mining classification algorithms, are used to process the large amount of peptide microarray data. However, these methods generally require training data and do not adapt to changing immune conditions or additional patient information. This work proposes advanced processing techniques to improve the classification and identification of single and multiple underlying immune response states embedded in immunosignatures, making it possible to detect both known and previously unknown diseases or biothreat agents. Novel adaptive learning methodologies for un- supervised and semi-supervised clustering integrated with immunosignature feature extraction approaches are proposed. The techniques are based on extracting novel stochastic features from microarray binding intensities and use Dirichlet process Gaussian mixture models to adaptively cluster the immunosignatures in the feature space. This learning-while-clustering approach allows continuous discovery of antibody activity by adaptively detecting new disease states, with limited a priori disease or patient information. A beta process factor analysis model to determine underlying patient immune responses is also proposed to further improve the adaptive clustering performance by formatting new relationships between patients and antibody activity. In order to extend the clustering methods for diagnosing multiple states in a patient, the adaptive hierarchical Dirichlet process is integrated with modified beta process factor analysis latent feature modeling to identify relationships between patients and infectious agents. The use of Bayesian nonparametric adaptive learning techniques allows for further clustering if additional patient data is received. Significant improvements in feature identification and immune response clustering are demonstrated using samples from patients with different diseases.

ContributorsMalin, Anna (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Bliss, Daniel (Committee member) / Chakrabarti, Chaitali (Committee member) / Kovvali, Narayan (Committee member) / Lacroix, Zoé (Committee member) / Arizona State University (Publisher)
Created2013
153463-Thumbnail Image.png
Description

Parkinson's disease is a neurodegenerative condition diagnosed on patients with

clinical history and motor signs of tremor, rigidity and bradykinesia, and the estimated

number of patients living with Parkinson's disease around the world is seven

to ten million. Deep brain stimulation (DBS) provides substantial relief of the motor

signs of Parkinson's disease patients. It

Parkinson's disease is a neurodegenerative condition diagnosed on patients with

clinical history and motor signs of tremor, rigidity and bradykinesia, and the estimated

number of patients living with Parkinson's disease around the world is seven

to ten million. Deep brain stimulation (DBS) provides substantial relief of the motor

signs of Parkinson's disease patients. It is an advanced surgical technique that is used

when drug therapy is no longer sufficient for Parkinson's disease patients. DBS alleviates the motor symptoms of Parkinson's disease by targeting the subthalamic nucleus using high-frequency electrical stimulation.

This work proposes a behavior recognition model for patients with Parkinson's

disease. In particular, an adaptive learning method is proposed to classify behavioral

tasks of Parkinson's disease patients using local field potential and electrocorticography

signals that are collected during DBS implantation surgeries. Unique patterns

exhibited between these signals in a matched feature space would lead to distinction

between motor and language behavioral tasks. Unique features are first extracted

from deep brain signals in the time-frequency space using the matching pursuit decomposition

algorithm. The Dirichlet process Gaussian mixture model uses the extracted

features to cluster the different behavioral signal patterns, without training or

any prior information. The performance of the method is then compared with other

machine learning methods and the advantages of each method is discussed under

different conditions.

ContributorsDutta, Arindam (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Holbert, Keith E. (Committee member) / Bliss, Daniel W. (Committee member) / Arizona State University (Publisher)
Created2015
153479-Thumbnail Image.png
Description

Analysis of social networks has the potential to provide insights into wide range of applications. As datasets continue to grow, a key challenge is the lack of a widely applicable algorithmic framework for detection of statistically anomalous networks and network properties. Unlike traditional signal processing, where models of truth or

Analysis of social networks has the potential to provide insights into wide range of applications. As datasets continue to grow, a key challenge is the lack of a widely applicable algorithmic framework for detection of statistically anomalous networks and network properties. Unlike traditional signal processing, where models of truth or empirical verification and background data exist and are often well defined, these features are commonly lacking in social and other networks. Here, a novel algorithmic framework for statistical signal processing for graphs is presented. The framework is based on the analysis of spectral properties of the residuals matrix. The framework is applied to the detection of innovation patterns in publication networks, leveraging well-studied empirical knowledge from the history of science. Both the framework itself and the application constitute novel contributions, while advancing algorithmic and mathematical techniques for graph-based data and understanding of the patterns of emergence of novel scientific research. Results indicate the efficacy of the approach and highlight a number of fruitful future directions.

ContributorsBliss, Nadya Travinin (Author) / Laubichler, Manfred (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2015