Matching Items (12)
Filtering by

Clear all filters

150826-Thumbnail Image.png
Description
The southwestern willow flycatcher (Empidonax traillii extimus) is listed as an endangered species throughout its range in the southwestern United States. Little is known about its sub-population spatial structure and how this impacts its population viability. In conjunction with being listed as endangered, a recovery plan was produced by the

The southwestern willow flycatcher (Empidonax traillii extimus) is listed as an endangered species throughout its range in the southwestern United States. Little is known about its sub-population spatial structure and how this impacts its population viability. In conjunction with being listed as endangered, a recovery plan was produced by the US Fish and Wildlife Service, with recovery units (sub-populations) roughly based on major river drainages. In the interest of examining this configuration of sub-populations and their impact on the measured population viability, I applied a multivariate auto-regressive state-space model to a spatially extensive time series of abundance data for the southwestern willow flycatcher over the period spanning 1995-2010 estimating critical growth parameters, correlation in environmental stochasticity or "synchronicity" between sub-populations (recovery units) and extinction risk of the sub-populations and the whole. The model estimates two parameters, the mean and variance of annual growth rate. Of the models I tested, I found the strongest support for a population model in which three of the recovery units were grouped (the Lower Colorado, Gila Basin, and Rio Grande recovery units) while keeping all others separate. This configuration has 6.6 times more support for the observed data than a configuration assigning each recovery unit to a separate sub-population, which is how they are circumscribed in the recovery plan. Given the best model, the mean growth rate is -0.0234 (CI95 -0.0939, 0.0412) with a variance of 0.0597 (CI95 0.0115, 0.1134). This growth rate is not significantly different from zero and this is reflected in the low potential for quasi-extinction. The cumulative probability of the population experiencing at least an 80% decline from current levels within 15 years for some sub-populations were much higher (range: 0.129-0.396 for an 80% decline). These results suggest that the rangewide population has a low risk of extinction in the next 15 years and that the formal recovery units specified by the original recovery plan do not correspond to proper sub-population units as defined by population synchrony.
ContributorsDockens, Patrick E. T. (Author) / Sabo, John (Thesis advisor) / Stromberg, Juliet (Committee member) / Fenichel, Eli (Committee member) / Arizona State University (Publisher)
Created2012
150816-Thumbnail Image.png
Description
Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate

Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate to massive crop damage and pest control costs. My dissertation focused on Oedaleus asiaticus, a dominant Asian locust, and had three main objectives. First, I identified morphological, physiological, and behavioral characteristics of the migratory ("brown") and non-migratory ("green") phenotypes. I found that brown morphs had longer wings, larger thoraxes and higher metabolic rates compared to green morphs, suggesting that developmental plasticity allows greater migratory capacity in the brown morph of this locust. Second, I tested the hypothesis of a causal link between livestock overgrazing and an increase in migratory swarms of O. asiaticus. Current paradigms generally assume that increased plant nitrogen (N) should enhance herbivore performance by relieving protein-limitation, increasing herbivorous insect populations. I showed, in contrast to this scenario, that host plant N-enrichment and high protein artificial diets decreased the size and viability of O. asiaticus. Plant N content was lowest and locust abundance highest in heavily livestock-grazed fields where soils were N-depleted, likely due to enhanced erosion and leaching. These results suggest that heavy livestock grazing promotes outbreaks of this locust by reducing plant protein content. Third, I tested for the influence of dietary imbalance, in conjunction with high population density, on migratory plasticity. While high population density has clearly been shown to induce the migratory morph in several locusts, the effect of diet has been unclear. I found that locusts reared at high population density and fed unfertilized plants (i.e. high quality plants for O. asiaticus) had the greatest migratory capacity, and maintained a high percent of brown locusts. These results did not support the hypothesis that poor-quality resources increased expression of migratory phenotypes. This highlights a need to develop new theoretical frameworks for predicting how environmental factors will regulate migratory plasticity in locusts and perhaps other insects.
ContributorsCease, Arianne (Author) / Harrison, Jon (Thesis advisor) / Elser, James (Thesis advisor) / DeNardo, Dale (Committee member) / Quinlan, Michael (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2012
157036-Thumbnail Image.png
Description
Environmental changes are occurring at an unprecedented rate, and these changes will undoubtedly lead to alterations in resource availability for many organisms. To effectively predict the implications of such changes, it is critical to better understand how organisms have adapted to coping with seasonally limited resources. The vast majority of

Environmental changes are occurring at an unprecedented rate, and these changes will undoubtedly lead to alterations in resource availability for many organisms. To effectively predict the implications of such changes, it is critical to better understand how organisms have adapted to coping with seasonally limited resources. The vast majority of previous work has focused on energy balance as the driver of changes in organismal physiology. While energy is clearly a vital currency, other resources can also be limited and impact physiological functions. Water is essential for life as it is the main constituent of cells, tissues, and organs. Yet, water has received little consideration for its role as a currency that impacts physiological functions. Given the importance of water to most major physiological systems, I investigated how water limitations interact with immune function, metabolism, and reproductive investment, an almost entirely unexplored area. Using multiple species and life stages, I demonstrated that dehydrated animals typically have enhanced innate immunity, regardless of whether the dehydration is a result of seasonal water constraints, water deprivation in the lab, or high physiological demand for water. My work contributed greatly to the understanding of immune function dynamics and lays a foundation for the study of hydration immunology as a component of the burgeoning field of ecoimmunology. While a large portion of my dissertation focused on the interaction between water balance and immune function, there are many other physiological processes that may be impacted by water restrictions. Accordingly, I recently expanded the understanding of how reproductive females can alter metabolic substrates to reallocate internal water during times of water scarcity, an important development in our knowledge of reproductive investments. Overall, by thoroughly evaluating implications and responses to water limitations, my dissertation, when combined previous acquired knowledge on food limitation, will enable scientists to better predict the impacts of future climate change, where, in many regions, rainfall events are forecasted to be less reliable, resulting in more frequent drought.
ContributorsBrusch, George, IV (Author) / DeNardo, Dale F (Thesis advisor) / Blattman, Joseph (Committee member) / French, Susannah (Committee member) / Sabo, John (Committee member) / Taylor, Emily (Committee member) / Arizona State University (Publisher)
Created2019
154914-Thumbnail Image.png
Description
There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives

There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives animal development, physiology, and behavior, yet the influence hydration has on immunity has received limited attention. In particular, hydration state may have the greatest potential to drive fluctuations in immunity and other physiological functions in species that live in water-limited environments where they may experience periods of dehydration. To shed light on the sensitivity of immune function to hydration state, I first tested the effect of hydration states (hydrated, dehydrated, and rehydrated) and digestive states on innate immunity in the Gila monster, a desert-dwelling lizard. Though dehydration is often thought to be stressful and, if experienced chronically, likely to decrease immune function, dehydration elicited an increase in immune response in this species, while digestive state had no effect. Next, I tested whether dehydration was indeed stressful, and tested a broader range of immune measures. My findings validated the enhanced innate immunity across additional measures and revealed that Gila monsters lacked a significant stress hormone response during dehydration (though results were suggestive). I next sought to test if life history (in terms of environmental stability) drives these differences in dehydration responses using a comparative approach. I compared four confamilial pairs of squamate species that varied in habitat type within each pair—four species that are adapted to xeric environments and four that are adapted to more mesic environments. No effect of life history was detected between groups, but hydration was a driver of some measures of innate immunity and of stress hormone concentrations in multiple species. Additionally, species that exhibited a stress response to dehydration did not have decreased innate immunity, suggesting these physiological responses may often be decoupled. My dissertation work provides new insight into the relationship between hydration, stress, and immunity, and it may inform future work exploring disease transmission or organismal responses to climate change.
ContributorsMoeller, Karla T (Author) / DeNardo, Dale (Thesis advisor) / Angilletta, Michael (Committee member) / French, Susannah (Committee member) / Rutowski, Ronald (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2016
155051-Thumbnail Image.png
Description
Cities can be sources of nitrate to downstream ecosystems resulting in eutrophication, harmful algal blooms, and hypoxia that can have negative impacts on economies and human health. One potential solution to this problem is to increase nitrate removal in cities by providing locations where denitrification¬— a microbial process in which

Cities can be sources of nitrate to downstream ecosystems resulting in eutrophication, harmful algal blooms, and hypoxia that can have negative impacts on economies and human health. One potential solution to this problem is to increase nitrate removal in cities by providing locations where denitrification¬— a microbial process in which nitrate is reduced to N2 gas permanently removing nitrate from systems— can occur. Accidental urban wetlands– wetlands that results from human activities, but are not designed or managed for any specific outcome¬– are one such feature in the urban landscape that could help mitigate nitrate pollution through denitrification.

The overarching question of this dissertation is: how do hydrology, soil conditions, and plant patches affect patterns of denitrification in accidental urban wetlands? To answer this question, I took a three-pronged approach using a combination of field and greenhouse studies. First, I examined drivers of broad patterns of denitrification in accidental urban wetlands. Second, I used a field study to test if plant traits influence denitrification indirectly by modifying soil resources. Finally, I examined how species richness and interactions between species influence nitrate retention and patterns of denitrification using both a field study and greenhouse experiment.

Hydroperiod of accidental urban wetlands mediated patterns of denitrification in response to monsoon floods and plant patches. Specifically, ephemeral wetlands had patterns of denitrification that were largely unexplained by monsoon floods or plant patches, which are common drivers of patterns of denitrification in non-urban wetlands. Several plant traits including belowground biomass, above- and belowground tissue chemistry and rooting depth influenced denitrification indirectly by changing soil organic matter or soil nitrate. However, several other plant traits also had significant direct relationships with denitrification, (i.e. not through the hypothesized indirect relationships through soil organic matter or soil nitrate). This means these plant traits were affecting another aspect of soil conditions not included in the analysis, highlighting the need to improve our understanding of how plant traits influence denitrification. Finally, increasing species richness did not increase nitrate retention or denitrification, but rather individual species had the greatest effects on nitrate retention and denitrification.
ContributorsSuchy, Amanda Klara (Author) / Childers, Daniel L. (Thesis advisor) / Stromberg, Juliet C. (Thesis advisor) / Grimm, Nancy (Committee member) / Hall, Sharon (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2016
155626-Thumbnail Image.png
Description
Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the

Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the vegetative community pose a great challenge to such balance between an organism and its environment. This is especially true in the Arabian Desert, where climate conditions are extreme and environmental disturbances substantial. This study combined laboratory and field components to enhance our understanding of dhub (Uromastyx aegyptius) ecophysiology and determine whether habitat protection influences dhub behavior and physiology.

Results of this study showed that while body mass and body condition consistently diminished as the active season progressed, they were both greater in protected habitats compared to non-protected habitats, regardless of season. Dhubs surface activity and total body water decreased while evaporative water loss and body temperature increased as the active season progressed and ambient temperature got hotter. Total body water was also significantly affected by habitat protection.

Overall, this study revealed that, while habitat protection provided more vegetation, it had little effect on seasonal changes in surface activity. While resource availability in protected areas might allow for larger dhub populations, unprotected areas showed similar body morphometrics, activity, and body temperatures. By developing an understanding of how different coping strategies are linked to particular ecological, morphological, and phylogenetic traits, we will be able to make more accurate predictions regarding the vulnerability of species. By combining previous studies pertaining to conservation of protected species with the results of my study, a number of steps in ecosystem management are recommended to help in the preservation of dhubs in the Kuwaiti desert.
ContributorsAl-Sayegh, Mohammed (Author) / DeNardo, Dale (Thesis advisor) / Angilletta, Michael (Committee member) / Smith, Andrew (Committee member) / Sabo, John (Committee member) / Majeed, Qais (Committee member) / Arizona State University (Publisher)
Created2017
168513-Thumbnail Image.png
Description
Introduction: Often it is presumed that in high-income countries, like the United States, water insecurity is not an issue. Yet, more than 2 million individuals in the United States are affected by water insecurity. Experiencing the effects of water insecurity are informal settlements and impoverished communities termed as “colonias”, characterized

Introduction: Often it is presumed that in high-income countries, like the United States, water insecurity is not an issue. Yet, more than 2 million individuals in the United States are affected by water insecurity. Experiencing the effects of water insecurity are informal settlements and impoverished communities termed as “colonias”, characterized by the lack of possessing basic infrastructures and services, including water systems and wastewater disposal amongst many. Purpose: To critically analyze how water insecurity manifests in the colonias and the impacts it has on the health and well-being of the community members. Methods: An extensive systematic literature review was conducted in the effort to bring a meaningful framework of existing challenges and potential resolutions and theorize water insecurity in colonias. Results: The effects of water insecurity due to water scarcity and water contamination in the colonias led to health complications, unsanitary living conditions and mental distress for residents. The causes of water insecurity in the colonias were because of political exclusion, municipal underbounding and the failure to monitor water quality. Conclusion: The dire consequences of household water insecurity to an individual, no less an entire population, are detrimental to health and well-being. Despite this acknowledgement of a critical and basic human necessity, literature reveals a robust water governance infrastructure is much needed for the people in colonias. For meaningful progress and developments to be made in addressing water insecurity for the people of colonias, this review was approached through a transdisciplinary lens - one that achieves convergence.
ContributorsPatwoary, Nargish (Author) / Wutich, Amber (Thesis advisor) / Sabo, John (Thesis advisor) / Roque, Anais (Committee member) / Arizona State University (Publisher)
Created2021
171945-Thumbnail Image.png
Description
Integrated water resources management for flood control, water distribution, conservation, and food security require understanding hydrological spatial and temporal trends. Proliferation of monitoring and sensor data has boosted data-driven simulation and evaluation. Developing data-driven models for such physical process-related phenomena, and meaningful interpretability therein, necessitates an inventive methodology. In this

Integrated water resources management for flood control, water distribution, conservation, and food security require understanding hydrological spatial and temporal trends. Proliferation of monitoring and sensor data has boosted data-driven simulation and evaluation. Developing data-driven models for such physical process-related phenomena, and meaningful interpretability therein, necessitates an inventive methodology. In this dissertation, I developed time series and deep learning model that connected rainfall, runoff, and fish species abundances. I also investigated the underlying explainabilty for hydrological processes and impacts on fish species. First, I created a streamflow simulation model using computer vision and natural language processing as an alternative to physical-based routing. I tested it on seven US river network sections and showed it outperformed time series models, deep learning baselines, and novel variants. In addition, my model explained flow routing without physical parameter input or time-consuming calibration. On the basis of this model, I expanded it from accepting dispersed spatial inputs to adopting comprehensive 2D grid data. I constructed a spatial-temporal deep leaning model for rainfall-runoff simulation. I tested it against a semi-distributed hydrological model and found superior results. Furthermore, I investigated the potential interpretability for rainfall-runoff process in both space and time. To understand impacts of flow variation on fish species, I applied a frequency based model framework for long term time series data simulation. First, I discovered that timing of hydrological anomalies was as crucial as their size. Flooding and drought, when properly timed, were both linked with excellent fishing productivity. To identify responses of various fish trait groups, I used this model to assess mitigated hydrological variation by fish attributes. Longitudinal migratory fish species were more impacted by flow variance, whereas migratory strategy species reacted in the same direction but to various degrees. Finally, I investigated future fish population changes under alternative design flow scenarios and showed that a protracted low flow with a powerful, on-time flood pulse would benefit fish. In my dissertation, I constructed three data-driven models that link the hydrological cycle to the stream environment and give insight into the underlying physical process, which is vital for quantitative, efficient, and integrated water resource management.
ContributorsDeng, Qi (Author) / Sabo, John (Thesis advisor) / Grimm, Nancy (Thesis advisor) / Ganguly, Auroop (Committee member) / Li, Wenwen (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2022
154019-Thumbnail Image.png
Description

An understanding of the formation of spatial heterogeneity is important because spatial heterogeneity leads to functional consequences at the ecosystem scale; however, such an understanding is still limited. Particularly, research simultaneously considering both external variables and internal feedbacks (self-organization) is rare, partly because these two drivers are addressed under different

An understanding of the formation of spatial heterogeneity is important because spatial heterogeneity leads to functional consequences at the ecosystem scale; however, such an understanding is still limited. Particularly, research simultaneously considering both external variables and internal feedbacks (self-organization) is rare, partly because these two drivers are addressed under different methodological frameworks. In this dissertation, I show the prevalence of internal feedbacks and their interaction with heterogeneity in the preexisting template to form spatial pattern. I use a variety of techniques to account for both the top-down template effect and bottom-up self-organization. Spatial patterns of nutrients in stream surface water are influenced by the self-organized patch configuration originating from the internal feedbacks between nutrient concentration, biological patchiness, and the geomorphic template. Clumps of in-stream macrophyte are shaped by the spatial gradient of water permanence and local self-organization. Additionally, significant biological interactions among plant species also influence macrophyte distribution. The relative contributions of these drivers change in time, responding to the larger external environments or internal processes of ecosystem development. Hydrologic regime alters the effect of geomorphic template and self-organization on in-stream macrophyte distribution. The relative importance of niche vs. neutral processes in shaping biodiversity pattern is a function of hydrology: neutral processes are more important in either very high or very low discharge periods. For the spatial pattern of nutrients, as the ecosystem moves toward late succession and nitrogen becomes more limiting, the effect of self-organization intensifies. Changes in relative importance of different drivers directly affect ecosystem macroscopic properties, such as ecosystem resilience. Stronger internal feedbacks in average to wetter years are shown to increase ecosystem resistance to elevated external stress, and make the backward shifts (vegetation loss) much more gradual. But it causes increases in ecosystem hysteresis effect. Finally, I address the question whether functional consequences of spatial heterogeneity feed back to influence the processes from which spatial heterogeneity emerged through a conceptual review. Such feedbacks are not likely. Self-organized spatial patterning is a result of regular biological processes of organisms. Individual organisms do not benefit from such order. It is order for free, and for nothing.

ContributorsDong, Xiaolin (Author) / Grimm, Nancy (Thesis advisor) / Muneepeerakul, Rachata (Thesis advisor) / Franklin, Janet (Committee member) / Heffernan, James B (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2015
154237-Thumbnail Image.png
Description
In desert riparian ecosystems, rivers provide free water but access to that water diminishes with distance producing a steep gradient in the relative importance of water for growth and reproduction of riparian animals and hence, their biodiversity. Previous work suggests that water limited riparian predators eat more prey to meet

In desert riparian ecosystems, rivers provide free water but access to that water diminishes with distance producing a steep gradient in the relative importance of water for growth and reproduction of riparian animals and hence, their biodiversity. Previous work suggests that water limited riparian predators eat more prey to meet their water demand where free water is not available. Here I explore the effect of water limitation on prey selection and per capita interaction strengths between a predatory spider ( Hogna antelucana) and two prey species occupying different trophic levels using a controlled field experiment conducted in the riparian forest of the San Pedro River, Cochise County, AZ. Lab measurements of water and energy content revealed that intermediate predators (smaller spiders in the genus Pardosa) had 100-fold higher energy: water ratios than an alternate prey species more basal in the food web (crickets in the genus Gryllus). Given this observation, I hypothesized that water-stressed predatory wolf spiders would select more water-laden crickets but switch to more energy rich Pardosa when water stress was experimentally eliminated. Additionally, I hypothesized that switching by quenched Hogna to Pardosa would reduce predation by Pardosa on Gryllus leading to increased abundance of the basal resource. Finally, I hypothesized that water mediated switching and release of basal prey would be stronger when male Hogna was the apex predator, because female Hogna have higher energetic costs of reproduction and hence, stronger energy limitation. Experimental water additions caused both sexes of Hogna to consume significantly higher numbers of Pardosa but this difference (between water and no-water treatments) did not vary significantly between male and female Hogna treatments. Similarly, strong negative interaction strengths between Hogna and Pardosa led to release of the basal prey species and positive interaction strengths of Hogna on Gryllus. Again strong positive, indirect effects of Hogna on Gryllus did not depend on the sex of the Hogna predator. However, water mediated indirect effects of Hogna (either sex) on Gryllus were the strongest for male Gryllus. These results suggest that water and energy co-dominate foraging decisions by predators and that in managing water-energy balance; predators can modify interaction pathways, sex-ratios of prey populations and trophic dynamics.
ContributorsLeinbach, Israel (Author) / Sabo, John (Thesis advisor) / Harrison, Jon (Committee member) / Johnson, Chadwick (Committee member) / Arizona State University (Publisher)
Created2015