Matching Items (98)
Filtering by

Clear all filters

171740-Thumbnail Image.png
Description
An important objective of AI is to understand real-world observations and build up interactive communication with people. The ability to interpret and react to the perception reveals the important necessity of developing such a system across both the modalities of Vision (V) and Language (L). Although there have been massive

An important objective of AI is to understand real-world observations and build up interactive communication with people. The ability to interpret and react to the perception reveals the important necessity of developing such a system across both the modalities of Vision (V) and Language (L). Although there have been massive efforts on various VL tasks, e.g., Image/Video Captioning, Visual Question Answering, and Textual Grounding, very few of them focus on building the VL models with increased efficiency under real-world scenarios. The main focus of this dissertation is to comprehensively investigate the very uncharted efficient VL learning, aiming to build lightweight, data-efficient, and real-world applicable VL models. The proposed studies in this dissertation take three primary aspects into account when it comes to efficient VL, 1). Data Efficiency: collecting task-specific annotations is prohibitively expensive and so manual labor is not always attainable. Techniques are developed to assist the VL learning from implicit supervision, i.e., in a weakly- supervised fashion. 2). Continuing from that, efficient representation learning is further explored with increased scalability, leveraging a large image-text corpus without task-specific annotations. In particular, the knowledge distillation technique is studied for generic Representation Learning which proves to bring substantial performance gain to the regular representation learning schema. 3). Architectural Efficiency. Deploying the VL model on edge devices is notoriously challenging due to their cumbersome architectures. To further extend these advancements to the real world, a novel efficient VL architecture is designed to tackle the inference bottleneck and the inconvenient two-stage training. Extensive discussions have been conducted on several critical aspects that prominently influence the performances of compact VL models.
ContributorsFang, Zhiyuan (Author) / Yang, Yezhou (Thesis advisor) / Baral, Chitta (Committee member) / Liu, Huan (Committee member) / Liu, Zicheng (Committee member) / Arizona State University (Publisher)
Created2022
171756-Thumbnail Image.png
Description
Social media has become a primary means of communication and a prominent source of information about day-to-day happenings in the contemporary world. The rise in the popularity of social media platforms in recent decades has empowered people with an unprecedented level of connectivity. Despite the benefits social media offers, it

Social media has become a primary means of communication and a prominent source of information about day-to-day happenings in the contemporary world. The rise in the popularity of social media platforms in recent decades has empowered people with an unprecedented level of connectivity. Despite the benefits social media offers, it also comes with disadvantages. A significant downside to staying connected via social media is the susceptibility to falsified information or Fake News. Easy accessibility to social media and lack of truth verification tools favored the miscreants on online platforms to spread false propaganda at scale, ensuing chaos. The spread of misinformation on these platforms ultimately leads to mistrust and social unrest. Consequently, there is a need to counter the spread of misinformation which could otherwise have a detrimental impact on society. A notable example of such a case is the 2019 Covid pandemic misinformation spread, where coordinated misinformation campaigns misled the public on vaccination and health safety. The advancements in Natural Language Processing gave rise to sophisticated language generation models that can generate realistic-looking texts. Although the current Fake News generation process is manual, it is just a matter of time before this process gets automated at scale and generates Neural Fake News using language generation models like the Bidirectional Encoder Representations from Transformers (BERT) and the third generation Generative Pre-trained Transformer (GPT-3). Moreover, given that the current state of fact verification is manual, it calls for an urgent need to develop reliable automated detection tools to counter Neural Fake News generated at scale. Existing tools demonstrate state-of-the-art performance in detecting Neural Fake News but exhibit a black box behavior. Incorporating explainability into the Neural Fake News classification task will build trust and acceptance amongst different communities and decision-makers. Therefore, the current study proposes a new set of interpretable discriminatory features. These features capture statistical and stylistic idiosyncrasies, achieving an accuracy of 82% on Neural Fake News classification. Furthermore, this research investigates essential dependency relations contributing to the classification process. Lastly, the study concludes by providing directions for future research in building explainable tools for Neural Fake News detection.
ContributorsKarumuri, Ravi Teja (Author) / Liu, Huan (Thesis advisor) / Corman, Steven (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2022
171764-Thumbnail Image.png
Description
This dissertation constructs a new computational processing framework to robustly and precisely quantify retinotopic maps based on their angle distortion properties. More generally, this framework solves the problem of how to robustly and precisely quantify (angle) distortions of noisy or incomplete (boundary enclosed) 2-dimensional surface to surface mappings. This framework

This dissertation constructs a new computational processing framework to robustly and precisely quantify retinotopic maps based on their angle distortion properties. More generally, this framework solves the problem of how to robustly and precisely quantify (angle) distortions of noisy or incomplete (boundary enclosed) 2-dimensional surface to surface mappings. This framework builds upon the Beltrami Coefficient (BC) description of quasiconformal mappings that directly quantifies local mapping (circles to ellipses) distortions between diffeomorphisms of boundary enclosed plane domains homeomorphic to the unit disk. A new map called the Beltrami Coefficient Map (BCM) was constructed to describe distortions in retinotopic maps. The BCM can be used to fully reconstruct the original target surface (retinal visual field) of retinotopic maps. This dissertation also compared retinotopic maps in the visual processing cascade, which is a series of connected retinotopic maps responsible for visual data processing of physical images captured by the eyes. By comparing the BCM results from a large Human Connectome project (HCP) retinotopic dataset (N=181), a new computational quasiconformal mapping description of the transformed retinal image as it passes through the cascade is proposed, which is not present in any current literature. The description applied on HCP data provided direct visible and quantifiable geometric properties of the cascade in a way that has not been observed before. Because retinotopic maps are generated from in vivo noisy functional magnetic resonance imaging (fMRI), quantifying them comes with a certain degree of uncertainty. To quantify the uncertainties in the quantification results, it is necessary to generate statistical models of retinotopic maps from their BCMs and raw fMRI signals. Considering that estimating retinotopic maps from real noisy fMRI time series data using the population receptive field (pRF) model is a time consuming process, a convolutional neural network (CNN) was constructed and trained to predict pRF model parameters from real noisy fMRI data
ContributorsTa, Duyan Nguyen (Author) / Wang, Yalin (Thesis advisor) / Lu, Zhong-Lin (Committee member) / Hansford, Dianne (Committee member) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2022
171921-Thumbnail Image.png
Description
With the bloom of machine learning, a massive amount of data has been used in the training process of machine learning. A tremendous amount of this data is user-generated data which allows the machine learning models to produce accurate results and personalized services. Nevertheless, I recognize the importance of preserving

With the bloom of machine learning, a massive amount of data has been used in the training process of machine learning. A tremendous amount of this data is user-generated data which allows the machine learning models to produce accurate results and personalized services. Nevertheless, I recognize the importance of preserving the privacy of individuals by protecting their information in the training process. One privacy attack that affects individuals is the private attribute inference attack. The private attribute attack is the process of inferring individuals' information that they do not explicitly reveal, such as age, gender, location, and occupation. The impacts of this go beyond knowing the information as individuals face potential risks. Furthermore, some applications need sensitive data to train the models and predict helpful insights and figuring out how to build privacy-preserving machine learning models will increase the capabilities of these applications.However, improving privacy affects the data utility which leads to a dilemma between privacy and utility. The utility of the data is measured by the quality of the data for different tasks. This trade-off between privacy and utility needs to be maintained to satisfy the privacy requirement and the result quality. To achieve more scalable privacy-preserving machine learning models, I investigate the privacy risks that affect individuals' private information in distributed machine learning. Even though the distributed machine learning has been driven by privacy concerns, privacy issues have been proposed in the literature which threaten individuals' privacy. In this dissertation, I investigate how to measure and protect individuals' privacy in centralized and distributed machine learning models. First, a privacy-preserving text representation learning is proposed to protect users' privacy that can be revealed from user generated data. Second, a novel privacy-preserving text classification for split learning is presented to improve users' privacy and retain high utility by defending against private attribute inference attacks.
ContributorsAlnasser, Walaa (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Shu, Kai (Committee member) / Bao, Tiffany (Committee member) / Arizona State University (Publisher)
Created2022
171925-Thumbnail Image.png
Description
The problem of monitoring complex networks for the detection of anomalous behavior is well known. Sensors are usually deployed for the purpose of monitoring these networks for anomalies and Sensor Placement Optimization (SPO) is the problem of determining where these sensors should be placed (deployed) in the network. Prior works

The problem of monitoring complex networks for the detection of anomalous behavior is well known. Sensors are usually deployed for the purpose of monitoring these networks for anomalies and Sensor Placement Optimization (SPO) is the problem of determining where these sensors should be placed (deployed) in the network. Prior works have utilized the well known Set Cover formulation in order to determine the locations where sensors should be placed in the network, so that anomalies can be effectively detected. However, such works cannot be utilized to address the problem when the objective is to not only detect the presence of anomalies, but also to detect (distinguish) the source(s) of the detected anomalies, i.e., uniquely monitoring the network. In this dissertation, I attempt to fill in this gap by utilizing the mathematical concept of Identifying Codes and illustrating how it not only can overcome the aforementioned limitation, but also it, and its variants, can be utilized to monitor complex networks modeled from multiple domains. Over the course of this dissertation, I make key contributions which further enhance the efficacy and applicability of Identifying Codes as a monitoring strategy. First, I show how Identifying Codes are superior to not only the Set Cover formulation but also standard graph centrality metrics, for the purpose of uniquely monitoring complex networks. Second, I study novel problems such as the budget constrained Identifying Code, scalable Identifying Code, robust Identifying Code etc., and present algorithms and results for the respective problems. Third, I present useful Identifying Code results for restricted graph classes such as Unit Interval Bigraphs and Unit Disc Bigraphs. Finally, I show the universality of Identifying Codes by applying it to multiple domains.
ContributorsBasu, Kaustav (Author) / Sen, Arunabha (Thesis advisor) / Davulcu, Hasan (Committee member) / Liu, Huan (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2022
171440-Thumbnail Image.png
Description
Machine learning models and in specific, neural networks, are well known for being inscrutable in nature. From image classification tasks and generative techniques for data augmentation, to general purpose natural language models, neural networks are currently the algorithm of preference that is riding the top of the current artificial intelligence

Machine learning models and in specific, neural networks, are well known for being inscrutable in nature. From image classification tasks and generative techniques for data augmentation, to general purpose natural language models, neural networks are currently the algorithm of preference that is riding the top of the current artificial intelligence (AI) wave, having experienced the greatest boost in popularity above any other machine learning solution. However, due to their inscrutable design based on the optimization of millions of parameters, it is ever so complex to understand how their decision is influenced nor why (and when) they fail. While some works aim at explaining neural network decisions or making systems to be inherently interpretable the great majority of state of the art machine learning works prioritize performance over interpretability effectively becoming black boxes. Hence, there is still uncertainty in the decision boundaries of these already deployed solutions whose predictions should still be analyzed and taken with care. This becomes even more important when these models are used on sensitive scenarios such as medicine, criminal justice, settings with native inherent social biases or where egregious mispredictions can negatively impact the system or human trust down the line. Thus, the aim of this work is to provide a comprehensive analysis on the failure modes of the state of the art neural networks from three domains: large image classifiers and their misclassifications, generative adversarial networks when used for data augmentation and transformer networks applied to structured representations and reasoning about actions and change.
ContributorsOlmo Hernandez, Alberto (Author) / Kambhampati, Subbarao (Thesis advisor) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Sengupta, Sailik (Committee member) / Arizona State University (Publisher)
Created2022
187374-Thumbnail Image.png
Description
Graph-structured data, ranging from social networks to financial transaction networks, from citation networks to gene regulatory networks, have been widely used for modeling a myriad of real-world systems. As a prevailing model architecture to model graph-structured data, graph neural networks (GNNs) has drawn much attention in both academic and

Graph-structured data, ranging from social networks to financial transaction networks, from citation networks to gene regulatory networks, have been widely used for modeling a myriad of real-world systems. As a prevailing model architecture to model graph-structured data, graph neural networks (GNNs) has drawn much attention in both academic and industrial communities in the past decades. Despite their success in different graph learning tasks, existing methods usually rely on learning from ``big'' data, requiring a large amount of labeled data for model training. However, it is common that real-world graphs are associated with ``small'' labeled data as data annotation and labeling on graphs is always time and resource-consuming. Therefore, it is imperative to investigate graph machine learning (Graph ML) with low-cost human supervision for low-resource settings where limited or even no labeled data is available. This dissertation investigates a new research field -- Data-Efficient Graph Learning, which aims to push forward the performance boundary of graph machine learning (Graph ML) models with different kinds of low-cost supervision signals. To achieve this goal, a series of studies are conducted for solving different data-efficient graph learning problems, including graph few-shot learning, graph weakly-supervised learning, and graph self-supervised learning.
ContributorsDing, Kaize (Author) / Liu, Huan (Thesis advisor) / Xue, Guoliang (Committee member) / Yang, Yezhou (Committee member) / Caverlee, James (Committee member) / Arizona State University (Publisher)
Created2023
187381-Thumbnail Image.png
Description
Artificial Intelligence (AI) systems have achieved outstanding performance and have been found to be better than humans at various tasks, such as sentiment analysis, and face recognition. However, the majority of these state-of-the-art AI systems use complex Deep Learning (DL) methods which present challenges for human experts to design and

Artificial Intelligence (AI) systems have achieved outstanding performance and have been found to be better than humans at various tasks, such as sentiment analysis, and face recognition. However, the majority of these state-of-the-art AI systems use complex Deep Learning (DL) methods which present challenges for human experts to design and evaluate such models with respect to privacy, fairness, and robustness. Recent examination of DL models reveals that representations may include information that could lead to privacy violations, unfairness, and robustness issues. This results in AI systems that are potentially untrustworthy from a socio-technical standpoint. Trustworthiness in AI is defined by a set of model properties such as non-discriminatory bias, protection of users’ sensitive attributes, and lawful decision-making. The characteristics of trustworthy AI can be grouped into three categories: Reliability, Resiliency, and Responsibility. Past research has shown that the successful integration of an AI model depends on its trustworthiness. Thus it is crucial for organizations and researchers to build trustworthy AI systems to facilitate the seamless integration and adoption of intelligent technologies. The main issue with existing AI systems is that they are primarily trained to improve technical measures such as accuracy on a specific task but are not considerate of socio-technical measures. The aim of this dissertation is to propose methods for improving the trustworthiness of AI systems through representation learning. DL models’ representations contain information about a given input and can be used for tasks such as detecting fake news on social media or predicting the sentiment of a review. The findings of this dissertation significantly expand the scope of trustworthy AI research and establish a new paradigm for modifying data representations to balance between properties of trustworthy AI. Specifically, this research investigates multiple techniques such as reinforcement learning for understanding trustworthiness in users’ privacy, fairness, and robustness in classification tasks like cyberbullying detection and fake news detection. Since most social measures in trustworthy AI cannot be used to fine-tune or train an AI model directly, the main contribution of this dissertation lies in using reinforcement learning to alter an AI system’s behavior based on non-differentiable social measures.
ContributorsMosallanezhad, Ahmadreza (Author) / Liu, Huan (Thesis advisor) / Mancenido, Michelle (Thesis advisor) / Doupe, Adam (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2023
187320-Thumbnail Image.png
Description
As threats emerge and change, the life of a police officer continues to intensify. To better support police training curriculums and police cadets through this critical career juncture, this thesis proposes a state-of-the-art framework for stress detection using real-world data and deep neural networks. As an integral step of a

As threats emerge and change, the life of a police officer continues to intensify. To better support police training curriculums and police cadets through this critical career juncture, this thesis proposes a state-of-the-art framework for stress detection using real-world data and deep neural networks. As an integral step of a larger study, this thesis investigates data processing techniques to handle the ambiguity of data collected in naturalistic contexts and leverages data structuring approaches to train deep neural networks. The analysis used data collected from 37 police training cadetsin five different training cohorts at the Phoenix Police Regional Training Academy. The data was collected at different intervals during the cadets’ rigorous six-month training course. In total, data were collected over 11 months from all the cohorts combined. All cadets were equipped with a Fitbit wearable device with a custom-built application to collect biometric data, including heart rate and self-reported stress levels. Throughout the data collection period, the cadets were asked to wear the Fitbit device and respond to stress level prompts to capture real-time responses. To manage this naturalistic data, this thesis leveraged heart rate filtering algorithms, including Hampel, Median, Savitzky-Golay, and Wiener, to remove potentially noisy data. After data processing and noise removal, the heart rate data and corresponding stress level labels are processed into two different dataset sizes. The data is then fed into a Deep ECGNet (created by Prajod et al.), a simple Feed Forward network (created by Sim et al.), and a Multilayer Perceptron (MLP) network for binary classification. Experimental results show that the Feed Forward network achieves the highest accuracy (90.66%) for data from a single cohort, while the MLP model performs best on data across cohorts, achieving an 85.92% accuracy. These findings suggest that stress detection is feasible on a variate set of real-world data using deepneural networks.
ContributorsParanjpe, Tara Anand (Author) / Zhao, Ming (Thesis advisor) / Roberts, Nicole (Thesis advisor) / Duran, Nicholas (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2023
189385-Thumbnail Image.png
Description
Machine learning models are increasingly being deployed in real-world applications where their predictions are used to make critical decisions in a variety of domains. The proliferation of such models has led to a burgeoning need to ensure the reliability and safety of these models, given the potential negative consequences of

Machine learning models are increasingly being deployed in real-world applications where their predictions are used to make critical decisions in a variety of domains. The proliferation of such models has led to a burgeoning need to ensure the reliability and safety of these models, given the potential negative consequences of model vulnerabilities. The complexity of machine learning models, along with the extensive data sets they analyze, can result in unpredictable and unintended outcomes. Model vulnerabilities may manifest due to errors in data input, algorithm design, or model deployment, which can have significant implications for both individuals and society. To prevent such negative outcomes, it is imperative to identify model vulnerabilities at an early stage in the development process. This will aid in guaranteeing the integrity, dependability, and safety of the models, thus mitigating potential risks and enabling the full potential of these technologies to be realized. However, enumerating vulnerabilities can be challenging due to the complexity of the real-world environment. Visual analytics, situated at the intersection of human-computer interaction, computer graphics, and artificial intelligence, offers a promising approach for achieving high interpretability of complex black-box models, thus reducing the cost of obtaining insights into potential vulnerabilities of models. This research is devoted to designing novel visual analytics methods to support the identification and analysis of model vulnerabilities. Specifically, generalizable visual analytics frameworks are instantiated to explore vulnerabilities in machine learning models concerning security (adversarial attacks and data perturbation) and fairness (algorithmic bias). In the end, a visual analytics approach is proposed to enable domain experts to explain and diagnose the model improvement of addressing identified vulnerabilities of machine learning models in a human-in-the-loop fashion. The proposed methods hold the potential to enhance the security and fairness of machine learning models deployed in critical real-world applications.
ContributorsXie, Tiankai (Author) / Maciejewski, Ross (Thesis advisor) / Liu, Huan (Committee member) / Bryan, Chris (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2023