Matching Items (14)
Filtering by

Clear all filters

150319-Thumbnail Image.png
Description
This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an inverted pendulum on a cart. Due to its inherent non-linearity and unstable behavior, very few techniques currently exist that are

This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an inverted pendulum on a cart. Due to its inherent non-linearity and unstable behavior, very few techniques currently exist that are capable of identifying this system. The challenge in identification also lies in the coupled behavior of the system and in the difficulty of obtaining the full-range dynamics. The differential equations describing the system dynamics are determined from measurements of the system's input-output behavior. These equations are assumed to consist of the superposition, with unknown weights, of a small number of terms drawn from a large library of nonlinear terms. Under this assumption, compressed sensing allows the constituent library elements and their corresponding weights to be identified by decomposing a time-series signal of the system's outputs into a sparse superposition of corresponding time-series signals produced by the library components. The most popular techniques for non-linear system identification entail the use of ANN's (Artificial Neural Networks), which require a large number of measurements of the input and output data at high sampling frequencies. The method developed in this project requires very few samples and the accuracy of reconstruction is extremely high. Furthermore, this method yields the Ordinary Differential Equation (ODE) of the system explicitly. This is in contrast to some ANN approaches that produce only a trained network which might lose fidelity with change of initial conditions or if facing an input that wasn't used during its training. This technique is expected to be of value in system identification of complex dynamic systems encountered in diverse fields such as Biology, Computation, Statistics, Mechanics and Electrical Engineering.
ContributorsNaik, Manjish Arvind (Author) / Cochran, Douglas (Thesis advisor) / Kovvali, Narayan (Committee member) / Kawski, Matthias (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2011
149906-Thumbnail Image.png
Description
In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of

In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of directed graphs. Viewing the higher-dimensional analogues of directed graphs through the lens of product systems, I give a rigorous proof that topological k-graphs are essentially product systems over N^k of topological graphs. I introduce a "compactly aligned" condition for such product systems of graphs and show that this coincides with the similarly-named conditions for topological k-graphs and for the associated product systems over N^k of C*-correspondences. Finally I consider the constructions arising from topological dynamical systems consisting of a locally compact Hausdorff space and k commuting local homeomorphisms. I show that in this case, the associated topological k-graph correspondence is isomorphic to the product system over N^k of C*-correspondences arising from a related Exel-Larsen system. Moreover, I show that the topological k-graph C*-algebra has a crossed product structure in the sense of Larsen.
ContributorsPatani, Nura (Author) / Kaliszewski, Steven (Thesis advisor) / Quigg, John (Thesis advisor) / Bremner, Andrew (Committee member) / Kawski, Matthias (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2011
150637-Thumbnail Image.png
Description
Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with infinite distributed delay terms based on some existing work is established. A rigorous analysis of the well-posedness of this model is provided, and it is proved that the susceptible bacteria persist. To study the persistence of phage species, a "Phage Reproduction Number" (PRN) is defined. The mathematical analysis shows phage persist if PRN > 1 and vanish if PRN < 1. A sufficient condition and a necessary condition for persistence of resistant bacteria are given. The persistence of the phage is essential for the persistence of resistant bacteria. Also, the resistant bacteria persist if its fitness is the same as the susceptible bacteria and if PRN > 1. A special case of the general model leads to a system of ordinary differential equations, for which numerical simulation results are presented.
ContributorsHan, Zhun (Author) / Smith, Hal (Thesis advisor) / Armbruster, Dieter (Committee member) / Kawski, Matthias (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2012
157198-Thumbnail Image.png
Description
In the 1980's, Gromov and Piatetski-Shapiro introduced a technique called "hybridization'' which allowed them to produce non-arithmetic hyperbolic lattices from two non-commensurable arithmetic lattices. It has been asked whether an analogous hybridization technique exists for complex hyperbolic lattices, because certain geometric obstructions make it unclear how to adapt this technique.

In the 1980's, Gromov and Piatetski-Shapiro introduced a technique called "hybridization'' which allowed them to produce non-arithmetic hyperbolic lattices from two non-commensurable arithmetic lattices. It has been asked whether an analogous hybridization technique exists for complex hyperbolic lattices, because certain geometric obstructions make it unclear how to adapt this technique. This thesis explores one possible construction (originally due to Hunt) in depth and uses it to produce arithmetic lattices, non-arithmetic lattices, and thin subgroups in SU(2,1).
ContributorsWells, Joseph (Author) / Paupert, Julien (Thesis advisor) / Kotschwar, Brett (Committee member) / Childress, Nancy (Committee member) / Fishel, Susanna (Committee member) / Kawski, Matthias (Committee member) / Arizona State University (Publisher)
Created2019
Description
Mark and Paupert concocted a general method for producing presentations for arithmetic non-cocompact lattices, \(\Gamma\), in isometry groups of negatively curved symmetric spaces. To get around the difficulty of constructing fundamental domains in spaces of variable curvature, their method invokes a classical theorem of Macbeath applied to a \(\Gamma\)-invariant

Mark and Paupert concocted a general method for producing presentations for arithmetic non-cocompact lattices, \(\Gamma\), in isometry groups of negatively curved symmetric spaces. To get around the difficulty of constructing fundamental domains in spaces of variable curvature, their method invokes a classical theorem of Macbeath applied to a \(\Gamma\)-invariant covering by horoballs of the negatively curved symmetric space upon which \(\Gamma\) acts. This thesis aims to explore the application of their method to the Picard modular groups, PU\((2,1;\mathcal{O}_{d})\), acting on \(\mathbb{H}_{\C}^2\). This document contains the derivations for the group presentations corresponding to \(d=2,11\), which completes the list of presentations for Picard modular groups whose entries lie in Euclidean domains, namely those with \(d=1,2,3,7,11\). There are differences in the method's application when the lattice of interest has multiple cusps. \(d = 5\) is the smallest value of \(d\) for which the corresponding Picard modular group, \(\PU(2,1;\mathcal{O}_5)\), has multiple cusps, and the method variations become apparent when working in this case.
ContributorsPolletta, David Michael (Author) / Paupert, Julien H (Thesis advisor) / Kotschwar, Brett (Committee member) / Fishel, Susanna (Committee member) / Kawski, Matthias (Committee member) / Childress, Nancy (Committee member) / Arizona State University (Publisher)
Created2021
168605-Thumbnail Image.png
Description
Recent experimental and mathematical work has shown the interdependence of the rod and cone photoreceptors with the retinal pigment epithelium in maintaining sight. Accelerated intake of glucose into the cones via the theoredoxin-like rod-derived cone viability factor (RdCVF) is needed as aerobic glycolysis is the primary source of energy

Recent experimental and mathematical work has shown the interdependence of the rod and cone photoreceptors with the retinal pigment epithelium in maintaining sight. Accelerated intake of glucose into the cones via the theoredoxin-like rod-derived cone viability factor (RdCVF) is needed as aerobic glycolysis is the primary source of energy production. Reactive oxidative species (ROS) result from the rod and cone metabolism and recent experimental work has shown that the long form of RdCVF (RdCVFL) helps mitigate the negative effects of ROS. In this work I investigate the role of RdCVFL in maintaining the health of the photoreceptors. The results of this mathematical model show the necessity of RdCVFL and also demonstrate additional stable modes that are present in this system. The sensitivity analysis shows the importance of glucose uptake, nutrient levels, and ROS mitigation in maintaining rod and cone health in light-damaged mouse models. Together, these suggest areas on which to focus treatment in order to prolong the photoreceptors, especially in situations where ROS is a contributing factor to their death such as retinitis pigmentosa (RP). A potential treatment with RdCVFL and its effects has never been studied in mathematical models. In this work, I examine an optimal control with the treatment of RdCVFL and mathematically illustrate the potential that this treatment might have for treating degenerative retinal diseases such as RP. Further, I examine optimal controls with the treatment of both RdCVF and RdCVFL in order to mathematically understand the potential that a dual treatment might have for treating degenerative retinal diseases such as RP. The RdCVFL control terms are nonlinear for biological accuracy but this results in the standard general theorems for existence of optimal controls failing to apply. I then linearize these models to have proof of existence of an optimal control. Both nonlinear and linearized control results are compared and reveal similarly substantial savings rates for rods and cones.
ContributorsWifvat, Kathryn (Author) / Camacho, Erika (Thesis advisor) / Wirkus, Stephen (Thesis advisor) / Gardner, Carl (Committee member) / Fricks, John (Committee member) / Kawski, Matthias (Committee member) / Arizona State University (Publisher)
Created2022
168490-Thumbnail Image.png
Description
Modern life is full of challenging optimization problems that we unknowingly attempt to solve. For instance, a common dilemma often encountered is the decision of picking a parking spot while trying to minimize both the distance to the goal destination and time spent searching for parking; one strategy is to

Modern life is full of challenging optimization problems that we unknowingly attempt to solve. For instance, a common dilemma often encountered is the decision of picking a parking spot while trying to minimize both the distance to the goal destination and time spent searching for parking; one strategy is to drive as close as possible to the goal destination but risk a penalty cost if no parking spaces can be found. Optimization problems of this class all have underlying time-varying processes that can be altered by a decision/input to minimize some cost. Such optimization problems are commonly solved by a class of methods called Dynamic Programming (DP) that breaks down a complex optimization problem into a simpler family of sub-problems. In the 1950s Richard Bellman introduced a class of DP methods that broke down Multi-Stage Optimization Problems (MSOP) into a nested sequence of ``tail problems”. Bellman showed that for any MSOP with a cost function that satisfies a condition called additive separability, the solution to the tail problem of the MSOP initialized at time-stage k>0 can be used to solve the tail problem initialized at time-stage k-1. Therefore, by recursively solving each tail problem of the MSOP, a solution to the original MSOP can be found. This dissertation extends Bellman`s theory to a broader class of MSOPs involving non-additively separable costs by introducing a new state augmentation solution method and generalizing the Bellman Equation. This dissertation also considers the analogous continuous-time counterpart to discrete-time MSOPs, called Optimal Control Problems (OCPs). OCPs can be solved by solving a nonlinear Partial Differential Equation (PDE) called the Hamilton-Jacobi-Bellman (HJB) PDE. Unfortunately, it is rarely possible to obtain an analytical solution to the HJB PDE. This dissertation proposes a method for approximately solving the HJB PDE based on Sum-Of-Squares (SOS) programming. This SOS algorithm can be used to synthesize controllers, hence solving the OCP, and also compute outer bounds of reachable sets of dynamical systems. This methodology is then extended to infinite time horizons, by proposing SOS algorithms that yield Lyapunov functions that can approximate regions of attraction and attractor sets of nonlinear dynamical systems arbitrarily well.
ContributorsJones, Morgan (Author) / Peet, Matthew M (Thesis advisor) / Nedich, Angelia (Committee member) / Kawski, Matthias (Committee member) / Mignolet, Marc (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2021
154345-Thumbnail Image.png
Description
This dissertation contains three main results. First, a generalization of Ionescu's theorem is proven. Ionescu's theorem describes an unexpected connection between graph C*-algebras and fractal geometry. In this work, this theorem is extended from ordinary directed graphs to

This dissertation contains three main results. First, a generalization of Ionescu's theorem is proven. Ionescu's theorem describes an unexpected connection between graph C*-algebras and fractal geometry. In this work, this theorem is extended from ordinary directed graphs to higher-rank graphs. Second, a characterization is given of the Cuntz-Pimsner algebra associated to a tensor product of C*-correspondences. This is a generalization of a result by Kumjian about graphs algebras. This second result is applied to several important special cases of Cuntz-Pimsner algebras including topological graph algebras, crossed products by the integers and crossed products by completely positive maps. The result has meaningful interpretations in each context. The third result is an extension of the second result from an ordinary tensor product to a special case of Woronowicz's twisted tensor product. This result simultaneously characterizes Cuntz-Pimsner algebras of ordinary and graded tensor products and Cuntz-Pimsner algebras of crossed products by actions and coactions of discrete groups, the latter partially recovering earlier results of Hao and Ng and of Kaliszewski, Quigg and Robertson.
ContributorsMorgan, Adam (Author) / Kaliszewski, Steven (Thesis advisor) / Quigg, John (Thesis advisor) / Spielberg, Jack (Committee member) / Kawski, Matthias (Committee member) / Kotschwar, Brett (Committee member) / Arizona State University (Publisher)
Created2016
157578-Thumbnail Image.png
Description
Numerous works have addressed the control of multi-robot systems for coverage, mapping, navigation, and task allocation problems. In addition to classical microscopic approaches to multi-robot problems, which model the actions and decisions of individual robots, lately, there has been a focus on macroscopic or Eulerian approaches. In these approaches, the

Numerous works have addressed the control of multi-robot systems for coverage, mapping, navigation, and task allocation problems. In addition to classical microscopic approaches to multi-robot problems, which model the actions and decisions of individual robots, lately, there has been a focus on macroscopic or Eulerian approaches. In these approaches, the population of robots is represented as a continuum that evolves according to a mean-field model, which is directly designed such that the corresponding robot control policies produce target collective behaviours.



This dissertation presents a control-theoretic analysis of three types of mean-field models proposed in the literature for modelling and control of large-scale multi-agent systems, including robotic swarms. These mean-field models are Kolmogorov forward equations of stochastic processes, and their analysis is motivated by the fact that as the number of agents tends to infinity, the empirical measure associated with the agents converges to the solution of these models. Hence, the problem of transporting a swarm of agents from one distribution to another can be posed as a control problem for the forward equation of the process that determines the time evolution of the swarm density.



First, this thesis considers the case in which the agents' states evolve on a finite state space according to a continuous-time Markov chain (CTMC), and the forward equation is an ordinary differential equation (ODE). Defining the agents' task transition rates as the control parameters, the finite-time controllability, asymptotic controllability, and stabilization of the forward equation are investigated. Second, the controllability and stabilization problem for systems of advection-diffusion-reaction partial differential equations (PDEs) is studied in the case where the control parameters include the agents' velocity as well as transition rates. Third, this thesis considers a controllability and optimal control problem for the forward equation in the more general case where the agent dynamics are given by a nonlinear discrete-time control system. Beyond these theoretical results, this thesis also considers numerical optimal transport for control-affine systems. It is shown that finite-volume approximations of the associated PDEs lead to well-posed transport problems on graphs as long as the control system is controllable everywhere.
ContributorsElamvazhuthi, Karthik (Author) / Berman, Spring Melody (Thesis advisor) / Kawski, Matthias (Committee member) / Kuiper, Hendrik (Committee member) / Mignolet, Marc (Committee member) / Peet, Matthew (Committee member) / Arizona State University (Publisher)
Created2019
157588-Thumbnail Image.png
Description
The main part of this work establishes existence, uniqueness and regularity properties of measure-valued solutions of a nonlinear hyperbolic conservation law with non-local velocities. Major challenges stem from in- and out-fluxes containing nonzero pure-point parts which cause discontinuities of the velocities. This part is preceded, and motivated, by an extended

The main part of this work establishes existence, uniqueness and regularity properties of measure-valued solutions of a nonlinear hyperbolic conservation law with non-local velocities. Major challenges stem from in- and out-fluxes containing nonzero pure-point parts which cause discontinuities of the velocities. This part is preceded, and motivated, by an extended study which proves that an associated optimal control problem has no optimal $L^1$-solutions that are supported on short time intervals.

The hyperbolic conservation law considered here is a well-established model for a highly re-entrant semiconductor manufacturing system. Prior work established well-posedness for $L^1$-controls and states, and existence of optimal solutions for $L^2$-controls, states, and control objectives. The results on measure-valued solutions presented here reduce to the existing literature in the case of initial state and in-flux being absolutely continuous measures. The surprising well-posedness (in the face of measures containing nonzero pure-point part and discontinuous velocities) is directly related to characteristic features of the model that capture the highly re-entrant nature of the semiconductor manufacturing system.

More specifically, the optimal control problem is to minimize an $L^1$-functional that measures the mismatch between actual and desired accumulated out-flux. The focus is on the transition between equilibria with eventually zero backlog. In the case of a step up to a larger equilibrium, the in-flux not only needs to increase to match the higher desired out-flux, but also needs to increase the mass in the factory and to make up for the backlog caused by an inverse response of the system. The optimality results obtained confirm the heuristic inference that the optimal solution should be an impulsive in-flux, but this is no longer in the space of $L^1$-controls.

The need for impulsive controls motivates the change of the setting from $L^1$-controls and states to controls and states that are Borel measures. The key strategy is to temporarily abandon the Eulerian point of view and first construct Lagrangian solutions. The final section proposes a notion of weak measure-valued solutions and proves existence and uniqueness of such.

In the case of the in-flux containing nonzero pure-point part, the weak solution cannot depend continuously on the time with respect to any norm. However, using semi-norms that are related to the flat norm, a weaker form of continuity of solutions with respect to time is proven. It is conjectured that also a similar weak continuous dependence on initial data holds with respect to a variant of the flat norm.
ContributorsGong, Xiaoqian, Ph.D (Author) / Kawski, Matthias (Thesis advisor) / Kaliszewski, Steven (Committee member) / Motsch, Sebastien (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2019