Matching Items (71)
Filtering by

Clear all filters

153876-Thumbnail Image.png
Description
For a (N+1)-bus power system, possibly 2N solutions exists. One of these solutions

is known as the high-voltage (HV) solution or operable solution. The rest of the solutions

are the low-voltage (LV), or large-angle, solutions.

In this report, a recently developed non-iterative algorithm for solving the power-

flow (PF) problem using the holomorphic embedding

For a (N+1)-bus power system, possibly 2N solutions exists. One of these solutions

is known as the high-voltage (HV) solution or operable solution. The rest of the solutions

are the low-voltage (LV), or large-angle, solutions.

In this report, a recently developed non-iterative algorithm for solving the power-

flow (PF) problem using the holomorphic embedding (HE) method is shown as

being capable of finding the HV solution, while avoiding converging to LV solutions

nearby which is a drawback to all other iterative solutions. The HE method provides a

novel non-iterative procedure to solve the PF problems by eliminating the

non-convergence and initial-estimate dependency issues appeared in the traditional

iterative methods. The detailed implementation of the HE method is discussed in the

report.

While published work focuses mainly on finding the HV PF solution, modified

holomorphically embedded formulations are proposed in this report to find the

LV/large-angle solutions of the PF problem. It is theoretically proven that the proposed

method is guaranteed to find a total number of 2N solutions to the PF problem

and if no solution exists, the algorithm is guaranteed to indicate such by the oscillations

in the maximal analytic continuation of the coefficients of the voltage power series

obtained.

After presenting the derivation of the LV/large-angle formulations for both PQ

and PV buses, numerical tests on the five-, seven- and 14-bus systems are conducted

to find all the solutions of the system of nonlinear PF equations for those systems using

the proposed HE method.

After completing the derivation to find all the PF solutions using the HE method, it

is shown that the proposed HE method can be used to find only the of interest PF solutions

(i.e. type-1 PF solutions with one positive real-part eigenvalue in the Jacobian

matrix), with a proper algorithm developed. The closet unstable equilibrium point

(UEP), one of the type-1 UEP’s, can be obtained by the proposed HE method with

limited dynamic models included.

The numerical performance as well as the robustness of the proposed HE method is

investigated and presented by implementing the algorithm on the problematic cases and

large-scale power system.
ContributorsMine, Yō (Author) / Tylavsky, Daniel (Thesis advisor) / Armbruster, Dieter (Committee member) / Holbert, Keith E. (Committee member) / Sankar, Lalitha (Committee member) / Vittal, Vijay (Committee member) / Undrill, John (Committee member) / Arizona State University (Publisher)
Created2015
153606-Thumbnail Image.png
Description
Non-volatile memory (NVM) has become a staple in the everyday life of consumers. NVM manifests inside cell phones, laptops, and most recently, wearable tech such as smart watches. NAND Flash has been an excellent solution to conditions requiring fast, compact NVM. Current technology nodes are nearing the physical limits of

Non-volatile memory (NVM) has become a staple in the everyday life of consumers. NVM manifests inside cell phones, laptops, and most recently, wearable tech such as smart watches. NAND Flash has been an excellent solution to conditions requiring fast, compact NVM. Current technology nodes are nearing the physical limits of scaling, preventing flash from improving. To combat the limitations of flash and to appease consumer demand for progressively faster and denser NVM, new technologies are needed. One possible candidate for the replacement of NAND Flash is programmable metallization cells (PMC). PMC are a type of resistive memory, meaning that they do not rely on charge storage to maintain a logic state. Depending on their application, it is possible that devices containing NVM will be exposed to harsh radiation environments. As part of the process for developing a novel memory technology, it is important to characterize the effects irradiation has on the functionality of the devices.

This thesis characterizes the effects that ionizing γ-ray irradiation has on the retention of the programmed resistive state of a PMC. The PMC devices tested used Ge30Se70 doped with Ag as the solid electrolyte layer and were fabricated by the thesis author in a Class 100 clean room. Individual device tiles were wire bonded into ceramic packages and tested in a biased and floating contact scenario.

The first scenario presented shows that PMC devices are capable of retaining their programmed state up to the maximum exposed total ionizing dose (TID) of 3.1 Mrad(Si). In this first scenario, the contacts of the PMC devices were left floating during exposure. The second scenario tested shows that the PMC devices are capable of retaining their state until the maximum TID of 10.1 Mrad(Si) was reached. The contacts in the second scenario were biased, with a 50 mV read voltage applied to the anode contact. Analysis of the results show that Ge30Se70 PMC are ionizing radiation tolerant and can retain a programmed state to a higher TID than NAND Flash memory.
ContributorsTaggart, Jennifer Lynn (Author) / Barnaby, Hugh (Thesis advisor) / Kozicki, Michael (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2015
153829-Thumbnail Image.png
Description
The reduced availability of 3He is a motivation for developing alternative neutron detectors. 6Li-enriched CLYC (Cs2LiYCl6), a scintillator, is a promising candidate to replace 3He. The neutron and gamma ray signals from CLYC have different shapes due to the slower decay of neutron pulses. Some of the well-known pulse shape

The reduced availability of 3He is a motivation for developing alternative neutron detectors. 6Li-enriched CLYC (Cs2LiYCl6), a scintillator, is a promising candidate to replace 3He. The neutron and gamma ray signals from CLYC have different shapes due to the slower decay of neutron pulses. Some of the well-known pulse shape discrimination techniques are charge comparison method, pulse gradient method and frequency gradient method. In the work presented here, we have applied a normalized cross correlation (NCC) approach to real neutron and gamma ray pulses produced by exposing CLYC scintillators to a mixed radiation environment generated by 137Cs, 22Na, 57Co and 252Cf/AmBe at different event rates. The cross correlation analysis produces distinctive results for measured neutron pulses and gamma ray pulses when they are cross correlated with reference neutron and/or gamma templates. NCC produces good separation between neutron and gamma rays at low (< 100 kHz) to mid event rate (< 200 kHz). However, the separation disappears at high event rate (> 200 kHz) because of pileup, noise and baseline shift. This is also confirmed by observing the pulse shape discrimination (PSD) plots and figure of merit (FOM) of NCC. FOM is close to 3, which is good, for low event rate but rolls off significantly along with the increase in the event rate and reaches 1 at high event rate. Future efforts are required to reduce the noise by using better hardware system, remove pileup and detect the NCC shapes of neutron and gamma rays using advanced techniques.
ContributorsChandhran, Premkumar (Author) / Holbert, Keith E. (Thesis advisor) / Spanias, Andreas (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2015
154425-Thumbnail Image.png
Description
Digital systems are essential to the technological advancements in space exploration. Microprocessor and flash memory are the essential parts of such a digital system. Space exploration requires a special class of radiation hardened microprocessors and flash memories, which are not functionally disrupted in the presence of radiation. The reference design

Digital systems are essential to the technological advancements in space exploration. Microprocessor and flash memory are the essential parts of such a digital system. Space exploration requires a special class of radiation hardened microprocessors and flash memories, which are not functionally disrupted in the presence of radiation. The reference design ‘HERMES’ is a radiation-hardened microprocessor with performance comparable to commercially available designs. The reference design ‘eFlash’ is a prototype of soft-error hardened flash memory for configuring Xilinx FPGAs. These designs are manufactured using a foundry bulk CMOS 90-nm low standby power (LP) process. This thesis presents the post-silicon validation results of these designs.
ContributorsGogulamudi, Anudeep Reddy (Author) / Clark, Lawrence T (Thesis advisor) / Holbert, Keith E. (Committee member) / Brunhaver, John (Committee member) / Arizona State University (Publisher)
Created2016
154405-Thumbnail Image.png
Description
With the growing importance of underground power systems and the need for greater reliability of the power supply, cable monitoring and accurate fault location detection has become an increasingly important issue. The presence of inherent random fluctuations in power system signals can be used to extract valuable information about the

With the growing importance of underground power systems and the need for greater reliability of the power supply, cable monitoring and accurate fault location detection has become an increasingly important issue. The presence of inherent random fluctuations in power system signals can be used to extract valuable information about the condition of system equipment. One such component is the power cable, which is the primary focus of this research.

This thesis investigates a unique methodology that allows online monitoring of an underground power cable. The methodology analyzes conventional power signals in the frequency domain to monitor the condition of a power cable.

First, the proposed approach is analyzed theoretically with the help of mathematical computations. Frequency domain analysis techniques are then used to compute the power spectral density (PSD) of the system signals. The importance of inherent noise in the system, a key requirement of this methodology, is also explained. The behavior of resonant frequencies, which are unique to every system, are then analyzed under different system conditions with the help of mathematical expressions.

Another important aspect of this methodology is its ability to accurately estimate cable fault location. The process is online and hence does not require the system to be disconnected from the grid. A single line to ground fault case is considered and the trend followed by the resonant frequencies for different fault positions is observed.

The approach is initially explained using theoretical calculations followed by simulations in MATLAB/Simulink. The validity of this technique is proved by comparing the results obtained from theory and simulation to actual measurement data.
ContributorsGovindarajan, Sudarshan (Author) / Holbert, Keith E. (Thesis advisor) / Heydt, Gerald (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2016
154055-Thumbnail Image.png
Description
The electromagnetic fields near power lines that may produce adverse effects on humans are of increasing interest in a variety of situations, thus making it worthwhile to develop general-purpose software that estimates both the electric and magnetic fields accurately. This study deals with the simulations of the electric and magnetic

The electromagnetic fields near power lines that may produce adverse effects on humans are of increasing interest in a variety of situations, thus making it worthwhile to develop general-purpose software that estimates both the electric and magnetic fields accurately. This study deals with the simulations of the electric and magnetic fields near high-voltage power lines for the triangular, horizontal and vertical conductor arrangements under both balanced and unbalanced conditions.

For all three conductor arrangements, the shapes of the electric field distribution curves are different with the vertical arrangement best for minimizing right of way consideration, while the shapes of the magnetic field distributions curves are similar. Except for the horizontal arrangement, the maximum electric field magnitudes with shield conductors are larger than those without shield conductors. Among the three different arrangements, the maximum field value of the vertical arrangement is most vulnerable to the unbalanced conditions.

For both the electric and magnetic fields, increasing the heights of phase conductors gradually results in diminishing return in terms of the field reduction. In this work, both the maximum electric field magnitudes and the maximum magnetic field magnitudes produced by 500 kV power lines at 1 m height from the ground are all within the permissible exposure levels for the general public. At last, the dynamic trajectories of both fields with time are simulated and interpreted, with each field represented by a vector rotating in a plane describing an ellipse, where the vector values can be compared to high-speed vector measurements.
ContributorsXiao, Lei (Author) / Holbert, Keith E. (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015
Description
Transmission voltages worldwide are increasing to accommodate higher power transfer from power generators to load centers. Insulator dimensions cannot increase linearly with the voltage, as supporting structures become too tall and heavy. Therefore, it is necessary to optimize the insulator design considering all operating conditions including dry, wet and contaminated.

Transmission voltages worldwide are increasing to accommodate higher power transfer from power generators to load centers. Insulator dimensions cannot increase linearly with the voltage, as supporting structures become too tall and heavy. Therefore, it is necessary to optimize the insulator design considering all operating conditions including dry, wet and contaminated. In order to design insulators suitably, a better understanding of the insulator flashover is required, as it is a serious issue regarding the safe operation of power systems. However, it is not always feasible to conduct field and laboratory studies due to limited time and money.

The desire to accurately predict the performance of insulator flashovers requires mathematical models. Dynamic models are more appropriate than static models in terms of the instantaneous variation of arc parameters. In this dissertation, a dynamic model including conditions for arc dynamics, arc re-ignition and arc motion with AC supply is first developed.

For an AC power source, it is important to consider the equivalent shunt capacitance in addition to the short circuit current when evaluating pollution test results. By including the power source in dynamic models, the effects of source parameters on the leakage current waveform, the voltage drop and the flashover voltage were systematically investigated. It has been observed that for the same insulator under the same pollution level, there is a large difference among these flashover performances in high voltage laboratories and real power systems. Source strength is believed to be responsible for this discrepancy. Investigations of test source strength were conducted in this work in order to study its impact on different types of insulators with a variety of geometries.

Traditional deterministic models which have been developed so far can only predict whether an insulator would flashover or withstand. In practice, insulator flashover is a statistical process, given that both pollution severity and flashover voltage are probabilistic variables. A probability approach to predict the insulator flashover likelihood is presented based on the newly developed dynamic model.
ContributorsHe, Li (Author) / Gorur, Ravi S (Thesis advisor) / Karady, George K (Committee member) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2016
154793-Thumbnail Image.png
Description
Overhead high voltage transmission lines are widely used around the world to deliver power to customers because of their low losses and high transmission capability. Well-coordinated insulation systems are capable of withstanding lightning and switching surge voltages. However, flashover is a serious issue to insulation systems, especially if the insulator

Overhead high voltage transmission lines are widely used around the world to deliver power to customers because of their low losses and high transmission capability. Well-coordinated insulation systems are capable of withstanding lightning and switching surge voltages. However, flashover is a serious issue to insulation systems, especially if the insulator is covered by a pollution layer. Many experiments in the laboratory have been conducted to investigate this issue. Since most experiments are time-consuming and costly, good mathematical models could contribute to predicting the insulator flashover performance as well as guide the experiments. This dissertation proposes a new statistical model to calculate the flashover probability of insulators under different supply voltages and contamination levels. An insulator model with water particles in the air is simulated to analyze the effects of rain and mist on flashover performance in reality. Additionally, insulator radius and number of sheds affect insulator surface resistivity and leakage distance. These two factors are studied to improve the efficiency of insulator design. This dissertation also discusses the impact of insulator surface hydrophobicity on flashover voltage.

Because arc propagation is a stochastic process, an arc could travel on different paths based on the electric field distribution. Some arc paths jump between insulator sheds instead of travelling along the insulator surfaces. The arc jumping could shorten the leakage distance and intensify the electric field. Therefore, the probabilities of arc jumping at different locations of sheds are also calculated in this dissertation.

The new simulation model is based on numerical electric field calculation and random walk theory. The electric field is calculated by the variable-grid finite difference method. The random walk theory from the Monte Carlo Method is utilized to describe the random propagation process of arc growth. This model will permit insulator engineers to design the reasonable geometry of insulators, to reduce the flashover phenomena under a wide range of operating conditions.
ContributorsHe, Jiahong (Author) / Gorur, Ravi (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2016
154899-Thumbnail Image.png
Description
Flash memories are critical for embedded devices to operate properly but are susceptible to radiation effects, which make flash memory a key factor to improve the reliability of circuitry. This thesis describes the simulation techniques used to analyze and predict total ionizing dose (TID) effects on 90-nm technology Silicon Storage

Flash memories are critical for embedded devices to operate properly but are susceptible to radiation effects, which make flash memory a key factor to improve the reliability of circuitry. This thesis describes the simulation techniques used to analyze and predict total ionizing dose (TID) effects on 90-nm technology Silicon Storage Technology (SST) SuperFlash Generation 3 devices. Silvaco Atlas is used for both device level design and simulation purposes.

The simulations consist of no radiation and radiation modeling. The no radiation modeling details the cell structure development and characterizes basic operations (read, erase and program) of a flash memory cell. The program time is observed to be approximately 10 μs while the erase time is approximately 0.1 ms.

The radiation modeling uses the fixed oxide charge method to analyze the TID effects on the same flash memory cell. After irradiation, a threshold voltage shift of the flash memory cell is observed. The threshold voltages of a programmed cell and an erased cell are reduced at an average rate of 0.025 V/krad.

The use of simulation techniques allows designers to better understand the TID response of a SST flash memory cell and to predict cell level TID effects without performing the costly in-situ irradiation experiments. The simulation and experimental results agree qualitatively. In particular, simulation results reveal that ‘0’ to ‘1’ errors but not ‘1’ to ‘0’ retention errors occur; likewise, ‘0’ to ‘1’ errors dominate experimental testing, which also includes circuitry effects that can cause ‘1’ to ‘0’ failures. Both simulation and experimental results reveal flash memory cell TID resilience to about 200 krad.
ContributorsChen, Yitao (Author) / Holbert, Keith E. (Thesis advisor) / Clark, Lawrence T. (Committee member) / Allee, David R. (Committee member) / Arizona State University (Publisher)
Created2016
154463-Thumbnail Image.png
Description
A novel integrated constant current LED driver design on a single chip is developed in this dissertation. The entire design consists of two sections. The first section is a DC-DC switching regulator (boost regulator) as the frontend power supply; the second section is the constant current LED driver system.

In the

A novel integrated constant current LED driver design on a single chip is developed in this dissertation. The entire design consists of two sections. The first section is a DC-DC switching regulator (boost regulator) as the frontend power supply; the second section is the constant current LED driver system.

In the first section, a pulse width modulated (PWM) peak current mode boost regulator is utilized. The overall boost regulator system and its related sub-cells are explained. Among them, an original error amplifier design, a current sensing circuit and slope compensation circuit are presented.

In the second section – the focus of this dissertation – a highly accurate constant current LED driver system design is unveiled. The detailed description of this highly accurate LED driver system and its related sub-cells are presented. A hybrid PWM and linear current modulation scheme to adjust the LED driver output currents is explained. The novel design ideas to improve the LED current accuracy and channel-to-channel output current mismatch are also explained in detail. These ideas include a novel LED driver system architecture utilizing 1) a dynamic current mirror structure and 2) a closed loop structure to keep the feedback loop of the LED driver active all the time during both PWM on-duty and PWM off-duty periods. Inside the LED driver structure, the driving amplifier with a novel slew rate enhancement circuit to dramatically accelerate its response time is also presented.
ContributorsWang, Ge (Author) / Holbert, Keith E. (Thesis advisor) / Song, Hongjiang (Committee member) / Ayyanar, Raja (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2016