Matching Items (23)
Filtering by

Clear all filters

149744-Thumbnail Image.png
Description
The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth

The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth surfaces from the polygonal domain has its share of issues and there is an inherent need to address various rendering bottlenecks that could hamper such a move. The game engine needs to choose an appropriate method based on in-game characteristics of the objects; character and animated objects need more sophisticated methods whereas static objects could use simpler techniques. Scaling the polygon count over various hardware platforms becomes an important factor. Much control is needed over the tessellation levels, either imposed by the hardware limitations or by the application, to be able to adaptively render the mesh without significant loss in performance. This thesis explores several methods that would help game engine developers in making correct design choices by optimally balancing the trade-offs while rendering the scene using smooth surfaces. It proposes a novel technique for adaptive tessellation of triangular meshes that vastly improves speed and tessellation count. It develops an approximate method for rendering Loop subdivision surfaces on tessellation enabled hardware. A taxonomy and evaluation of the methods is provided and a unified rendering system that provides automatic level of detail by switching between the methods is proposed.
ContributorsAmresh, Ashish (Author) / Farin, Gerlad (Thesis advisor) / Razdan, Anshuman (Thesis advisor) / Wonka, Peter (Committee member) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2011
Description
Generating real-world content for VR is challenging in terms of capturing and processing at high resolution and high frame-rates. The content needs to represent a truly immersive experience, where the user can look around in 360-degree view and perceive the depth of the scene. The existing solutions only capture and

Generating real-world content for VR is challenging in terms of capturing and processing at high resolution and high frame-rates. The content needs to represent a truly immersive experience, where the user can look around in 360-degree view and perceive the depth of the scene. The existing solutions only capture and offload the compute load to the server. But offloading large amounts of raw camera feeds takes longer latencies and poses difficulties for real-time applications. By capturing and computing on the edge, we can closely integrate the systems and optimize for low latency. However, moving the traditional stitching algorithms to battery constrained device needs at least three orders of magnitude reduction in power. We believe that close integration of capture and compute stages will lead to reduced overall system power.

We approach the problem by building a hardware prototype and characterize the end-to-end system bottlenecks of power and performance. The prototype has 6 IMX274 cameras and uses Nvidia Jetson TX2 development board for capture and computation. We found that capturing is bottlenecked by sensor power and data-rates across interfaces, whereas compute is limited by the total number of computations per frame. Our characterization shows that redundant capture and redundant computations lead to high power, huge memory footprint, and high latency. The existing systems lack hardware-software co-design aspects, leading to excessive data transfers across the interfaces and expensive computations within the individual subsystems. Finally, we propose mechanisms to optimize the system for low power and low latency. We emphasize the importance of co-design of different subsystems to reduce and reuse the data. For example, reusing the motion vectors of the ISP stage reduces the memory footprint of the stereo correspondence stage. Our estimates show that pipelining and parallelization on custom FPGA can achieve real time stitching.
ContributorsGunnam, Sridhar (Author) / LiKamWa, Robert (Thesis advisor) / Turaga, Pavan (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2018
156790-Thumbnail Image.png
Description
Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movements. Many researchers advocate pushing processing close to the sensor to substantially reduce data movements. However, continuous near-sensor processing raises the sensor temperature, impairing the fidelity of imaging/vision tasks.

The work characterizes the thermal implications of using 3D stacked

Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movements. Many researchers advocate pushing processing close to the sensor to substantially reduce data movements. However, continuous near-sensor processing raises the sensor temperature, impairing the fidelity of imaging/vision tasks.

The work characterizes the thermal implications of using 3D stacked image sensors with near-sensor vision processing units. The characterization reveals that near-sensor processing reduces system power but degrades image quality. For reasonable image fidelity, the sensor temperature needs to stay below a threshold, situationally determined by application needs. Fortunately, the characterization also identifies opportunities -- unique to the needs of near-sensor processing -- to regulate temperature based on dynamic visual task requirements and rapidly increase capture quality on demand.

Based on the characterization, the work proposes and investigate two thermal management strategies -- stop-capture-go and seasonal migration -- for imaging-aware thermal management. The work present parameters that govern the policy decisions and explore the trade-offs between system power and policy overhead. The work's evaluation shows that the novel dynamic thermal management strategies can unlock the energy-efficiency potential of near-sensor processing with minimal performance impact, without compromising image fidelity.
ContributorsKodukula, Venkatesh (Author) / LiKamWa, Robert (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Brunhaver, John (Committee member) / Arizona State University (Publisher)
Created2019
156833-Thumbnail Image.png
Description
Mixed reality mobile platforms co-locate virtual objects with physical spaces, creating immersive user experiences. To create visual harmony between virtual and physical spaces, the virtual scene must be accurately illuminated with realistic physical lighting. To this end, a system was designed that Generates Light Estimation Across Mixed-reality (GLEAM) devices to

Mixed reality mobile platforms co-locate virtual objects with physical spaces, creating immersive user experiences. To create visual harmony between virtual and physical spaces, the virtual scene must be accurately illuminated with realistic physical lighting. To this end, a system was designed that Generates Light Estimation Across Mixed-reality (GLEAM) devices to continually sense realistic lighting of a physical scene in all directions. GLEAM optionally operate across multiple mobile mixed-reality devices to leverage collaborative multi-viewpoint sensing for improved estimation. The system implements policies that prioritize resolution, coverage, or update interval of the illumination estimation depending on the situational needs of the virtual scene and physical environment.

To evaluate the runtime performance and perceptual efficacy of the system, GLEAM was implemented on the Unity 3D Game Engine. The implementation was deployed on Android and iOS devices. On these implementations, GLEAM can prioritize dynamic estimation with update intervals as low as 15 ms or prioritize high spatial quality with update intervals of 200 ms. User studies across 99 participants and 26 scene comparisons reported a preference towards GLEAM over other lighting techniques in 66.67% of the presented augmented scenes and indifference in 12.57% of the scenes. A controlled lighting user study on 18 participants revealed a general preference for policies that strike a balance between resolution and update rate.
ContributorsPrakash, Siddhant (Author) / LiKamWa, Robert (Thesis advisor) / Yang, Yezhou (Thesis advisor) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2018
154976-Thumbnail Image.png
Description
Metal castings are selectively machined-based on dimensional control requirements. To ensure that all the finished surfaces are fully machined, each as-cast part needs to be measured and then adjusted optimally in its fixture. The topics of this thesis address two parts of this process: data translations and feature-fitting clouds of

Metal castings are selectively machined-based on dimensional control requirements. To ensure that all the finished surfaces are fully machined, each as-cast part needs to be measured and then adjusted optimally in its fixture. The topics of this thesis address two parts of this process: data translations and feature-fitting clouds of points measured on each cast part. For the first, a CAD model of the finished part is required to be communicated to the machine shop for performing various machining operations on the metal casting. The data flow must include GD&T specifications along with other special notes that may be required to communicate to the machinist. Current data exchange, among various digital applications, is limited to translation of only CAD geometry via STEP AP203. Therefore, an algorithm is developed in order to read, store and translate the data from a CAD file (for example SolidWorks, CREO) to a standard and machine readable format (ACIS format - *.sat). Second, the geometry of cast parts varies from piece to piece and hence fixture set-up parameters for each part must be adjusted individually. To predictively determine these adjustments, the datum surfaces, and to-be-machined surfaces are scanned individually and the point clouds reduced to feature fits. The scanned data are stored as separate point cloud files. The labels associated with the datum and to-be-machined (TBM) features are extracted from the *.sat file. These labels are further matched with the file name of the point cloud data to identify data for the respective features. The point cloud data and the CAD model are then used to fit the appropriate features (features at maximum material condition (MMC) for datums and features at least material condition (LMC) for TBM features) using the existing normative feature fitting (nFF) algorithm. Once the feature fitting is complete, a global datum reference frame (GDRF) is constructed based on the locating method that will be used to machine the part. The locating method is extracted from a fixture library that specifies the type of fixturing used to machine the part. All entities are transformed from its local coordinate system into the GDRF. The nominal geometry, fitted features, and the GD&T information are then stored in a neutral file format called the Constraint Tolerance Feature (CTF) Graph. The final outputs are then used to identify the locations of the critical features on each part and these are used to establish the adjustments for its setup prior to machining, in another module, not part of this thesis.
ContributorsRamnath, Satchit (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph (Committee member) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2016
155774-Thumbnail Image.png
Description
In UAVs and parking lots, it is typical to first collect an enormous number of pixels using conventional imagers. This is followed by employment of expensive methods to compress by throwing away redundant data. Subsequently, the compressed data is transmitted to a ground station. The past decade has seen the

In UAVs and parking lots, it is typical to first collect an enormous number of pixels using conventional imagers. This is followed by employment of expensive methods to compress by throwing away redundant data. Subsequently, the compressed data is transmitted to a ground station. The past decade has seen the emergence of novel imagers called spatial-multiplexing cameras, which offer compression at the sensing level itself by providing an arbitrary linear measurements of the scene instead of pixel-based sampling. In this dissertation, I discuss various approaches for effective information extraction from spatial-multiplexing measurements and present the trade-offs between reliability of the performance and computational/storage load of the system. In the first part, I present a reconstruction-free approach to high-level inference in computer vision, wherein I consider the specific case of activity analysis, and show that using correlation filters, one can perform effective action recognition and localization directly from a class of spatial-multiplexing cameras, called compressive cameras, even at very low measurement rates of 1\%. In the second part, I outline a deep learning based non-iterative and real-time algorithm to reconstruct images from compressively sensed (CS) measurements, which can outperform the traditional iterative CS reconstruction algorithms in terms of reconstruction quality and time complexity, especially at low measurement rates. To overcome the limitations of compressive cameras, which are operated with random measurements and not particularly tuned to any task, in the third part of the dissertation, I propose a method to design spatial-multiplexing measurements, which are tuned to facilitate the easy extraction of features that are useful in computer vision tasks like object tracking. The work presented in the dissertation provides sufficient evidence to high-level inference in computer vision at extremely low measurement rates, and hence allows us to think about the possibility of revamping the current day computer systems.
ContributorsKulkarni, Kuldeep Sharad (Author) / Turaga, Pavan (Thesis advisor) / Li, Baoxin (Committee member) / Chakrabarti, Chaitali (Committee member) / Sankaranarayanan, Aswin (Committee member) / LiKamWa, Robert (Committee member) / Arizona State University (Publisher)
Created2017
154871-Thumbnail Image.png
Description
Parts are always manufactured with deviations from their nominal geometry due to many reasons such as inherent inaccuracies in the machine tools and environmental conditions. It is a designer job to devise a proper tolerance scheme to allow reasonable freedom to a manufacturer for imperfections without compromising performance. It takes

Parts are always manufactured with deviations from their nominal geometry due to many reasons such as inherent inaccuracies in the machine tools and environmental conditions. It is a designer job to devise a proper tolerance scheme to allow reasonable freedom to a manufacturer for imperfections without compromising performance. It takes years of experience and strong practical knowledge of the device function, manufacturing process and GD&T standards for a designer to create a good tolerance scheme. There is almost no theoretical resource to help designers in GD&T synthesis. As a result, designers often create inconsistent and incomplete tolerance schemes that lead to high assembly scrap rates. Auto-Tolerancing project was started in the Design Automation Lab (DAL) to investigate the degree to which tolerance synthesis can be automated. Tolerance synthesis includes tolerance schema generation (sans tolerance values) and tolerance value allocation. This thesis aims to address the tolerance schema generation. To develop an automated tolerance schema synthesis toolset, to-be-toleranced features need to be identified, required tolerance types should be determined, a scheme for computer representation of the GD&T information need to be developed, sequence of control should be identified, and a procedure for creating datum reference frames (DRFs) should be developed. The first three steps define the architecture of the tolerance schema generation module while the last two steps setup a base to create a proper tolerance scheme with the help of GD&T good practice rules obtained from experts. The GD&T scheme recommended by this module is used by the tolerance value allocation/analysis module to complete the process of automated tolerance synthesis. Various test cases are studied to verify the suitability of this module. The results show that software-generated schemas are proper enough to address the assemblability issues (first order tolerancing). Since this novel technology is at its initial stage of development, performing further researches and case studies will definitely help to improve the software for making more comprehensive tolerance schemas that cover design intent (second order tolerancing) and cost optimization (third order tolerancing).
ContributorsHejazi, Sayed Mohammad (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2016
168650-Thumbnail Image.png
Description
Nowadays, demand from the Internet of Things (IoT), automotive networking, and video applications is driving the transformation of Ethernet. It is a shift towards time-sensitive Ethernet. As a large amount of data is transmitted, many errors occur in the network. For this increased traffic, a Time Sensitive Network (TSN) is

Nowadays, demand from the Internet of Things (IoT), automotive networking, and video applications is driving the transformation of Ethernet. It is a shift towards time-sensitive Ethernet. As a large amount of data is transmitted, many errors occur in the network. For this increased traffic, a Time Sensitive Network (TSN) is important. Time-Sensitive Network (TSN) is a technology that provides a definitive service for time sensitive traffic in an Ethernet environment that provides time-synchronization. In order to efficiently manage these errors, countermeasures against errors are required. A system that maintains its function even in the event of an internal fault or failure is called a Fault-Tolerant system. For this, after configuring the network environment using the OMNET++ program, machine learning was used to estimate the optimal alternative routing path in case an error occurred in transmission. By setting an alternate path before an error occurs, I propose a method to minimize delay and minimize data loss when an error occurs. Various methods were compared. First, when no replication environment and secondly when ideal replication, thirdly random replication, and lastly replication using ML were tested. In these experiments, replication in an ideal environment showed the best results, which is because everything is optimal. However, except for such an ideal environment, replication prediction using the suggested ML showed the best results. These results suggest that the proposed method is effective, but there may be problems with efficiency and error control, so an additional overview is provided for further improvement.
ContributorsLee, Sang hee (Author) / Reisslein, Martin (Thesis advisor) / LiKamWa, Robert (Committee member) / Thyagaturu, Akhilesh (Committee member) / Arizona State University (Publisher)
Created2022
187854-Thumbnail Image.png
Description
Traditional sports coaching involves face-to-face instructions with athletes or playingback 2D videos of athletes’ training. However, if the coach is not in the same area as the athlete, then the coach will not be able to see the athlete’s full body and thus cannot give precise guidance to the athlete, limiting the

Traditional sports coaching involves face-to-face instructions with athletes or playingback 2D videos of athletes’ training. However, if the coach is not in the same area as the athlete, then the coach will not be able to see the athlete’s full body and thus cannot give precise guidance to the athlete, limiting the athlete’s improvement. To address these challenges, this paper proposes Augmented Coach, an augmented reality platform where coaches can view, manipulate and comment on athletes’ movement volumetric video data remotely via the network. In particular, this work includes a). Capturing the athlete’s movement video data with Kinects and converting it into point cloud format b). Transmitting the point cloud data to the coach’s Oculus headset via 5G or wireless network c). Coach’s commenting on the athlete’s joints. In addition, the evaluation of Augmented Coach includes an assessment of its performance from five metrics via the wireless network and 5G network environment, but also from the coaches’ and athletes’ experience of using it. The result shows that Augmented Coach enables coaches to instruct athletes from a distance and provide effective feedback for correcting athletes’ motions under the network.
ContributorsQiao, Yunhan (Author) / LiKamWa, Robert (Thesis advisor) / Bansal, Ajay (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2023
189274-Thumbnail Image.png
Description
Structural Magnetic Resonance Imaging analysis is a vital component in the study of Alzheimer’s Disease pathology and several techniques exist as part of the existing research conducted. In particular, volumetric approaches in this field are known to be beneficial due to the increased capability to express morphological characteristics when compared

Structural Magnetic Resonance Imaging analysis is a vital component in the study of Alzheimer’s Disease pathology and several techniques exist as part of the existing research conducted. In particular, volumetric approaches in this field are known to be beneficial due to the increased capability to express morphological characteristics when compared to manifold methods. To aid in the improvement of the field, this paper aims to propose an intrinsic volumetric conic system that can be applied to bounded volumetric meshes to enable a more effective study of subjects. The computation of the metric involves the use of heat kernel theory and conformal parameterization on genus-0 surfaces extended to a volumetric domain. Additionally, this paper also explores the use of the ’TetCNN’ architecture on the classification of hippocampal tetrahedral meshes to detect features that correspond to Alzheimer’s indicators. The model tested was able to achieve remarkable results with a measured classification accuracy of above 90% in the task of differentiating between subjects diagnosed with Alzheimer’s and normal control subjects.
ContributorsGeorge, John Varghese (Author) / Wang, Yalin (Thesis advisor) / Hansford, Dianne (Committee member) / Gupta, Vikash (Committee member) / Arizona State University (Publisher)
Created2023