Matching Items (154)

Filtering by

Clear all filters

149826-Thumbnail Image.png

The ensemble étude for violins: an examination with an annotated survey of violin trios and quartets and an original étude for four violins

Description

ABSTRACT &eacutetudes; written for violin ensemble, which include violin duets, trios, and quartets, are less numerous than solo &eacutetudes.; These works rarely go by the title "&eacutetude;," and have not been the focus of much scholarly

ABSTRACT &eacutetudes; written for violin ensemble, which include violin duets, trios, and quartets, are less numerous than solo &eacutetudes.; These works rarely go by the title "&eacutetude;," and have not been the focus of much scholarly research. Ensemble &eacutetudes; have much to offer students, teachers and composers, however, because they add an extra dimension to the learning, teaching, and composing processes. This document establishes the value of ensemble &eacutetudes; in pedagogy and explores applications of the repertoire currently available. Rather than focus on violin duets, the most common form of ensemble &eacutetude;, it mainly considers works for three and four violins without accompaniment. Concentrating on the pedagogical possibilities of studying &eacutetudes; in a group, this document introduces creative ways that works for violin ensemble can be used as both &eacutetudes; and performance pieces. The first two chapters explore the history and philosophy of the violin &eacutetude; and multiple-violin works, the practice of arranging of solo &eacutetudes; for multiple instruments, and the benefits of group learning and cooperative learning that distinguish ensemble &eacutetude; study from solo &eacutetude; study. The third chapter is an annotated survey of works for three and four violins without accompaniment, and serves as a pedagogical guide to some of the available repertoire. Representing a wide variety of styles, techniques and levels, it illuminates an historical association between violin ensemble works and pedagogy. The fourth chapter presents an original composition by the author, titled Variations on a Scottish Folk Song: &eacutetude; for Four Violins, with an explanation of the process and techniques used to create this ensemble &eacutetude.; This work is an example of the musical and technical integration essential to &eacutetude; study, and demonstrates various compositional traits that promote cooperative learning. Ensemble &eacutetudes; are valuable pedagogical tools that deserve wider exposure. It is my hope that the information and ideas about ensemble &eacutetudes; in this paper and the individual descriptions of the works presented will increase interest in and application of violin trios and quartets at the university level.

Contributors

Agent

Created

Date Created
2011

149842-Thumbnail Image.png

Geechie Wiley: an exploration of enigmatic virtuosity

Description

The name of Geechie Wiley has surfaced only rarely since 1931, when she recorded her second session with the Paramount Company in Grafton, WI. A few scholars including Paul Oliver and Greil Marcus unearthed and promoted her music and called

The name of Geechie Wiley has surfaced only rarely since 1931, when she recorded her second session with the Paramount Company in Grafton, WI. A few scholars including Paul Oliver and Greil Marcus unearthed and promoted her music and called for further research on this enigmatic figure. In other publications, Wiley is frequently given only passing mention in long lists of talented female blues singer-guitarists, or briefly discussed in descriptions of songsters. Her music is lauded in the liner notes of the myriad compilation albums that have re-released her recordings. However, prior to this study, Marcus's three-page profile is the longest work written about Wiley; other contributions range between one sentence and two paragraphs in length. None really answers the question: who was Geechie Wiley? This thesis begins by documenting my attempt to piece together all information presently available on Geechie Wiley. A biographical chapter, supplemented with a discussion of the blues songster, follows. I then discuss my methodology and philosophy for transcription. This is followed by a critical and comparative analysis of the recordings, using the transcriptions as supplements. Finally, my fifth chapter presents conclusions about Wiley's life, career, and disappearance. My transcriptions of Wiley's six songs are found in the first appendix. Reproductions of Paramount Records advertisements are located in the final appendix. In these ways, this thesis argues that Wiley's work traces the transformation of African-American music from the general secular music of the songsters to the iconic blues genre.

Contributors

Agent

Created

Date Created
2011

A performer's perspective on double clarinet music: pieces by William O. Smith, Eric Mandat, and Jody Rockmaker with interviews and a recording

Description

This final research paper provides both a performer's perspective and a recording of double clarinet literature by William O. Smith (b. 1926), Eric Mandat (b. 1957), and Jody Rockmaker (b. 1961). The document includes musical examples, references to the recording,

This final research paper provides both a performer's perspective and a recording of double clarinet literature by William O. Smith (b. 1926), Eric Mandat (b. 1957), and Jody Rockmaker (b. 1961). The document includes musical examples, references to the recording, and interviews with the composers. The first chapter contains a brief literature review of sources on world double clarinets, biographies of the above-mentioned composers, and other pertinent information. Chapters 2-4 include the performer's perspective on the following works: Epitaphs for Double Clarinet by William O. Smith, Double Life for Solo Clarinet by Eric Mandat, and two compositions by Jody Rockmaker, Half and Half for demi-clarinet in A, and Double Dip. The final chapter examines how double clarinet music has evolved, the challenges and limitations of the repertoire, and the future of the double clarinet genre.

Contributors

Agent

Created

Date Created
2013

152233-Thumbnail Image.png

Low power, high throughput continuous flow PCR instruments for environmental applications

Description

Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation.

Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large sample volumes from over a wide area and transporting them to laboratory testing facilities, which fail to provide any real-time information. This dissertation evaluates the systems currently utilized for in-situ field analyses and the issues hampering the successful deployment of such bioanalytial instruments for environmental applications. The design and development of high throughput, low power, and autonomous Polymerase Chain Reaction (PCR) instruments, amenable for portable field operations capable of providing quantitative results is presented here as part of this dissertation. A number of novel innovations have been reported here as part of this work in microfluidic design, PCR thermocycler design, optical design and systems integration. Emulsion microfluidics in conjunction with fluorinated oils and Teflon tubing have been used for the fluidic module that reduces cross-contamination eliminating the need for disposable components or constant cleaning. A cylindrical heater has been designed with the tubing wrapped around fixed temperature zones enabling continuous operation. Fluorescence excitation and detection have been achieved by using a light emitting diode (LED) as the excitation source and a photomultiplier tube (PMT) as the detector. Real-time quantitative PCR results were obtained by using multi-channel fluorescence excitation and detection using LED, optical fibers and a 64-channel multi-anode PMT for measuring continuous real-time fluorescence. The instrument was evaluated by comparing the results obtained with those obtained from a commercial instrument and found to be comparable. To further improve the design and enhance its field portability, this dissertation also presents a framework for the instrumentation necessary for a portable digital PCR platform to achieve higher throughputs with lower power. Both systems were designed such that it can easily couple with any upstream platform capable of providing nucleic acid for analysis using standard fluidic connections. Consequently, these instruments can be used not only in environmental applications, but portable diagnostics applications as well.

Contributors

Agent

Created

Date Created
2013

150986-Thumbnail Image.png

Energy efficient RF transmitter design using enhanced breakdown voltage SOI-CMOS compatible MESFETs

Description

The high cut-off frequency of deep sub-micron CMOS technologies has enabled the integration of radio frequency (RF) transceivers with digital circuits. However, the challenging point is the integration of RF power amplifiers, mainly due to the low breakdown voltage of

The high cut-off frequency of deep sub-micron CMOS technologies has enabled the integration of radio frequency (RF) transceivers with digital circuits. However, the challenging point is the integration of RF power amplifiers, mainly due to the low breakdown voltage of CMOS transistors. Silicon-on-insulator (SOI) metal semiconductor field effect transistors (MESFETs) have been introduced to remedy the limited headroom concern in CMOS technologies. The MESFETs presented in this thesis have been fabricated on different SOI-CMOS processes without making any change to the standard fabrication steps and offer 2-30 times higher breakdown voltage than the MOSFETs on the same process. This thesis explains the design steps of high efficiency and wideband RF transmitters using the proposed SOI-CMOS compatible MESFETs. This task involves DC and RF characterization of MESFET devices, along with providing a compact Spice model for simulation purposes. This thesis presents the design of several SOI-MESFET RF power amplifiers operating at 433, 900 and 1800 MHz with ~40% bandwidth. Measurement results show a peak power added efficiency (PAE) of 55% and a peak output power of 22.5 dBm. The RF-PAs were designed to operate in Class-AB mode to minimize the linearity degradation. Class-AB power amplifiers lead to poor power added efficiency, especially when fed with signals with high peak to average power ratio (PAPR) such as wideband code division multiple access (W-CDMA). Polar transmitters have been introduced to improve the efficiency of RF-PAs at backed-off powers. A MESFET based envelope tracking (ET) polar transmitter was designed and measured. A low drop-out voltage regulator (LDO) was used as the supply modulator of this polar transmitter. MESFETs are depletion mode devices; therefore, they can be configured in a source follower configuration to have better stability and higher bandwidth that MOSFET based LDOs. Measurement results show 350 MHz bandwidth while driving a 10 pF capacitive load. A novel polar transmitter is introduced in this thesis to alleviate some of the limitations associated with polar transmitters. The proposed architecture uses the backgate terminal of a partially depleted transistor on SOI process, which relaxes the bandwidth and efficiency requirements of the envelope amplifier in a polar transmitter. The measurement results of the proposed transmitter demonstrate more than three times PAE improvement at 6-dB backed-off output power, compared to the traditional RF transmitters.

Contributors

Agent

Created

Date Created
2012

152447-Thumbnail Image.png

Biosensors and CMOS interface circuits

Description

Analysing and measuring of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. Point of care diagnostic system, composing of biosensors, have promising applications for providing cheap, accurate and portable diagnosis. Owing to these expanding

Analysing and measuring of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. Point of care diagnostic system, composing of biosensors, have promising applications for providing cheap, accurate and portable diagnosis. Owing to these expanding medical applications and advances made by semiconductor industry biosensors have seen a tremendous growth in the past few decades. Also emergence of microfluidics and non-invasive biosensing applications are other marker propellers. Analyzing biological signals using transducers is difficult due to the challenges in interfacing an electronic system to the biological environment. Detection limit, detection time, dynamic range, specificity to the analyte, sensitivity and reliability of these devices are some of the challenges in developing and integrating these devices. Significant amount of research in the field of biosensors has been focused on improving the design, fabrication process and their integration with microfluidics to address these challenges. This work presents new techniques, design and systems to improve the interface between the electronic system and the biological environment. This dissertation uses CMOS circuit design to improve the reliability of these devices. Also this work addresses the challenges in designing the electronic system used for processing the output of the transducer, which converts biological signal into electronic signal.

Contributors

Agent

Created

Date Created
2014

151804-Thumbnail Image.png

Evaluation and characterization of Silicon MESFETs in low dropout regulators

Description

The partially-depleted (PD) silicon Metal Semiconductor Field Effect Transistor (MESFET) is becoming more and more attractive for analog and RF applications due to its high breakdown voltage. Compared to conventional CMOS high voltage transistors, the silicon MESFET can be fabricated

The partially-depleted (PD) silicon Metal Semiconductor Field Effect Transistor (MESFET) is becoming more and more attractive for analog and RF applications due to its high breakdown voltage. Compared to conventional CMOS high voltage transistors, the silicon MESFET can be fabricated in commercial standard Silicon-on-Insulator (SOI) CMOS foundries without any change to the process. The transition frequency of the device is demonstrated to be 45GHz, which makes the MESFET suitable for applications in high power RF power amplifier designs. Also, high breakdown voltage and low turn-on resistance make it the ideal choice for switches in the switching regulator designs. One of the anticipated applications of the MESFET is for the pass device for a low dropout linear regulator. Conventional NMOS and PMOS linear regulators suffer from high dropout voltage, low bandwidth and poor stability issues. In contrast, the N-MESFET pass transistor can provide an ultra-low dropout voltage and high bandwidth without the need for an external compensation capacitor to ensure stability. In this thesis, the design theory and problems of the conventional linear regulators are discussed. N-MESFET low dropout regulators are evaluated and characterized. The error amplifier used a folded cascode architecture with gain boosting. The source follower topology is utilized as the buffer to sink the gate leakage current from the MESFET. A shunt-feedback transistor is added to reduce the output impedance and provide the current adaptively. Measurement results show that the dropout voltage is less than 150 mV for a 1A load current at 1.8V output. Radiation measurements were done for discrete MESFET and fully integrated LDO regulators, which demonstrate their radiation tolerance ability for aerospace applications.

Contributors

Agent

Created

Date Created
2013

152285-Thumbnail Image.png

Codoped zinc oxide by a novel co-spray deposition technique for solar cells applications

Description

Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive

Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient and low cost technique for large area and uniform deposition of semiconductor thin films. In particular, it provides an easier way to dope the film by simply adding the dopant precursor into the starting solution. In order to reduce the resistivity of undoped ZnO, many works have been done by doping in the ZnO with either group IIIA elements or VIIA elements using spray pyrolysis. However, the resistivity is still too high to meet TCO's resistivity requirement. In the present work, a novel co-spray deposition technique is developed to bypass a fundamental limitation in the conventional spray deposition technique, i.e. the deposition of metal oxides from incompatible precursors in the starting solution. With this technique, ZnO films codoped with one cationic dopant, Al, Cr, or Fe, and an anionic dopant, F, have been successfully synthesized, in which F is incompatible with all these three cationic dopants. Two starting solutions were prepared and co-sprayed through two separate spray heads. One solution contained only the F precursor, NH 4F. The second solution contained the Zn and one cationic dopant precursors, Zn(O 2CCH 3) 2 and AlCl 3, CrCl 3, or FeCl 3. The deposition was carried out at 500 &degC; on soda-lime glass in air. Compared to singly-doped ZnO thin films, codoped ZnO samples showed better electrical properties. Besides, a minimum sheet resistance, 55.4 Ω/sq, was obtained for Al and F codoped ZnO films after vacuum annealing at 400 &degC;, which was lower than singly-doped ZnO with either Al or F. The transmittance for the Al and F codoped ZnO samples was above 90% in the visible range. This co-spray deposition technique provides a simple and cost-effective way to synthesize metal oxides from incompatible precursors with improved properties.

Contributors

Agent

Created

Date Created
2013

152288-Thumbnail Image.png

Resistance switching in chalcogenide based programmable metallization cells (PMC) and sensors under gamma-rays

Description

Chalcogenide glass (ChG) materials have gained wide attention because of their applications in conductive bridge random access memory (CBRAM), phase change memories (PC-RAM), optical rewritable disks (CD-RW and DVD-RW), microelectromechanical systems (MEMS), microfluidics, and optical communications. One of the significant

Chalcogenide glass (ChG) materials have gained wide attention because of their applications in conductive bridge random access memory (CBRAM), phase change memories (PC-RAM), optical rewritable disks (CD-RW and DVD-RW), microelectromechanical systems (MEMS), microfluidics, and optical communications. One of the significant properties of ChG materials is the change in the resistivity of the material when a metal such as Ag or Cu is added to it by diffusion. This study demonstrates the potential radiation-sensing capabilities of two metal/chalcogenide glass device configurations. Lateral and vertical device configurations sense the radiation-induced migration of Ag+ ions in germanium selenide glasses via changes in electrical resistance between electrodes on the ChG. Before irradiation, these devices exhibit a high-resistance `OFF-state' (in the order of 10E12) but following irradiation, with either 60-Co gamma-rays or UV light, their resistance drops to a low-resistance `ON-state' (around 10E3). Lateral devices have exhibited cyclical recovery with room temperature annealing of the Ag doped ChG, which suggests potential uses in reusable radiation sensor applications. The feasibility of producing inexpensive flexible radiation sensors has been demonstrated by studying the effects of mechanical strain and temperature stress on sensors formed on flexible polymer substrate. The mechanisms of radiation-induced Ag/Ag+ transport and reactions in ChG have been modeled using a finite element device simulator, ATLAS. The essential reactions captured by the simulator are radiation-induced carrier generation, combined with reduction/oxidation for Ag species in the chalcogenide film. Metal-doped ChGs are solid electrolytes that have both ionic and electronic conductivity. The ChG based Programmable Metallization Cell (PMC) is a technology platform that offers electric field dependent resistance switching mechanisms by formation and dissolution of nano sized conductive filaments in a ChG solid electrolyte between oxidizable and inert electrodes. This study identifies silver anode agglomeration in PMC devices following large radiation dose exposure and considers device failure mechanisms via electrical and material characterization. The results demonstrate that by changing device structural parameters, silver agglomeration in PMC devices can be suppressed and reliable resistance switching may be maintained for extremely high doses ranging from 4 Mrad(GeSe) to more than 10 Mrad (ChG).

Contributors

Agent

Created

Date Created
2013

152557-Thumbnail Image.png

Marketing in music therapy: a survey of self-employed music therapists to identify methods of marketing planning, positioning, promotion, and implementation

Description

ABSTRACT A survey of board-certified music therapists who identified themselves as self-employed was conducted to examine current methods of marketing related to planning, positioning, promotion, and implementation within a music therapy private practice or contracting model, as well as identify

ABSTRACT A survey of board-certified music therapists who identified themselves as self-employed was conducted to examine current methods of marketing related to planning, positioning, promotion, and implementation within a music therapy private practice or contracting model, as well as identify trends in marketing methods as compared to prior research. Respondents (n=273) provided data via online survey as to current marketing practices, assessment of personal marketing skills, and views on marketing's overall role in their businesses. Historical, qualitative, and quantitative distinctions were developed through statistical analysis as to the relationship between respondents' views and current marketing practices. Results show that self-employed music therapists agree marketing is a vital part of their business and that creating a unique brand identity is necessary to differentiate oneself from the competition. A positive correlation was identified between those who are confident in their marketing skills and the dollar amount of rates charged for services. Presentations, websites, and networking were regarded as the top marketing vehicles currently used to garner new business, with a trend towards increased use of social media as a potential marketing avenue. Challenges for respondents appear to include the creation and implementation of written marketing plans and maintaining measurable marketing objectives. Barriers to implementation may include confidence in personal marketing skills, time required, and financial constraints. The majority of respondents agreed that taking an 8-hour CMTE course regarding marketing methods for self-employed music therapists would be beneficial.

Contributors

Agent

Created

Date Created
2014