Matching Items (9)
Filtering by

Clear all filters

187735-Thumbnail Image.png
Description
Phenotypic evolution is of great significance within biology, as it is the culmination of the influence of key evolutionary factors on the expression of genotypes. Deeper studies of the fundamental components, such as fitness effects of mutations and genetic variance within a population, allow one to predict the evolutionary trajectory

Phenotypic evolution is of great significance within biology, as it is the culmination of the influence of key evolutionary factors on the expression of genotypes. Deeper studies of the fundamental components, such as fitness effects of mutations and genetic variance within a population, allow one to predict the evolutionary trajectory of phenotypic evolution. In this regard, how much the change in mutational variance and the ongoing natural selection influence the rate of phenotypic evolution has yet to be fully understood. Therefore, this study measured mutational variances and the increasing rate of genetic variance during the experimental evolution of Escherichia coli populations, focusing on two growth-related traits, the populational maximum growth rate and carrying capacity. Mutational variances were measured by mutation-accumulation experiments, which allowed for the analysis of the effects of spontaneous mutations on growth-related traits in the absence of selection. This analysis revealed that some evolved populations developed a higher mutational variance for growth-related traits. Further investigation showed that most evolved populations have also developed a greater mutational effect, which could explain the increase in mutational variance. Finally, the genetic variances for most evolved populations are lower than expected in the absence of selection, and the involvement of either stabilizing or directional selection is evident. Future experiments with a larger sample size of experimentally evolved populations, as well as more intermediate timepoints during experimental evolution, may provide further insight regarding the complexities of the evolutionary outcomes of these traits.
ContributorsGonzales, Jadon (Author) / Lynch, Michael (Thesis advisor) / Geiler-Samerotte, Kerry (Committee member) / Ho, Wei-Chin (Committee member) / Arizona State University (Publisher)
Created2023
187406-Thumbnail Image.png
Description
Life history theory offers a powerful framework to understand evolutionary selection pressures and explain how adaptive strategies use the life history trade-off and differences in cancer defenses across the tree of life. There is often some cost to the phenotype of therapeutic resistance and so sensitive cells can usually outcompete

Life history theory offers a powerful framework to understand evolutionary selection pressures and explain how adaptive strategies use the life history trade-off and differences in cancer defenses across the tree of life. There is often some cost to the phenotype of therapeutic resistance and so sensitive cells can usually outcompete resistant cells in the absence of therapy. Adaptive therapy, as an evolutionary and ecologically inspired paradigm in cancer treatment, uses the competitive interactions between drug-sensitive, and drug-resistant subclones to help suppress the drug-resistant subclones. However, there remain several open challenges in designing adaptive therapies, particularly in extending this approach to multiple drugs. Furthermore, the immune system also plays a role in preventing and controlling cancers. Life history theory may help to explain the variation in immune cell levels across the tree of life that likely contributes to variance in cancer prevalence across vertebrates. However, this has not been previously explored. This work 1) describes resistance management for cancer, lessons cancer researchers learned from farmers since adaptive evolutionary strategies were inspired by the management of resistance in agricultural pests, 2) demonstrates how adaptive therapy protocols work with gemcitabine and capecitabine in a hormone-refractory breast cancer mouse model, 3) tests for a relationship between life history strategy and the immune system, and tests for an effect of immune cells levels on cancer prevalence across vertebrates, and 4) provides a novel approach to improve the teaching of life history theory. This work applies lessons that cancer researchers learned from pest managers, who face similar issues of pesticide resistance, to control cancers. It represents the first time that multiple drugs have been used in adaptive therapy for cancer, and the first time that adaptive therapy has been used on hormone-refractory breast cancer. I found that this evolutionary approach to cancer treatment prolongs survival in mice and also selects for the slow life history strategy. I also discovered that species with slower life histories have higher concentrations of white blood cells and a higher percentage of heterophils, monocytes and segmented neutrophils. Moreover, larger platelet size is associated with higher cancer prevalence in mammals.
ContributorsSeyedi, Seyedehsareh (Author) / Maley, Carlo (Thesis advisor) / Blattman, Joseph (Committee member) / Anderson, Karen (Committee member) / Wilson, Melissa (Committee member) / Huijben, Silvie (Committee member) / Gatenby, Robert (Committee member) / Arizona State University (Publisher)
Created2023
187561-Thumbnail Image.png
Description
Lignocellulose, the major structural component of plant biomass, represents arenewable substrate of enormous biotechnological value. Microbial production of chemicals from lignocellulosic biomass is an attractive alternative to chemical synthesis. However, to create industrially competitive strains to efficiently convert lignocellulose to high-value chemicals, current challenges must be addressed. Redox constraints, allosteric regulation, and transport-related limitations

Lignocellulose, the major structural component of plant biomass, represents arenewable substrate of enormous biotechnological value. Microbial production of chemicals from lignocellulosic biomass is an attractive alternative to chemical synthesis. However, to create industrially competitive strains to efficiently convert lignocellulose to high-value chemicals, current challenges must be addressed. Redox constraints, allosteric regulation, and transport-related limitations are important bottlenecks limiting the commercial production of renewable chemicals from lignocellulose. Advances in metabolic engineering techniques have enabled researchers to engineer microbial strains that overcome some of these challenges but new approaches that facilitate the commercial viability of lignocellulose valorization are needed. Biological systems are complex with a plethora of regulatory systems that must be carefully modulated to efficiently produce and excrete the desired metabolites. In this work, I explore metabolic engineering strategies to address some of the biological constraints limiting bioproduction such as redox, allosteric, and transport constraints to facilitate cost-effective lignocellulose bioconversion.
ContributorsOnyeabor, Moses Ekenedilichukwu (Author) / Wang, Xuan (Thesis advisor) / Varman, Arul M (Committee member) / Nannenga, Brent (Committee member) / Nielsen, David R (Committee member) / Geiler-Samerotte, Kerry (Committee member) / Arizona State University (Publisher)
Created2023
187419-Thumbnail Image.png
Description
Protein misfolding is a problem faced by all organisms, but the reasons behind misfolded protein toxicity are largely unknown. It is difficult to pinpoint one exact mechanism as the effects of misfolded proteins can be widespread and variable between cells. To better understand their impacts, here I explore the consequences

Protein misfolding is a problem faced by all organisms, but the reasons behind misfolded protein toxicity are largely unknown. It is difficult to pinpoint one exact mechanism as the effects of misfolded proteins can be widespread and variable between cells. To better understand their impacts, here I explore the consequences of misfolded proteins and if they affect all cells equally or affect some cells more than others. To investigate cell subpopulations, I built and optimized a cutting-edge single-cell RNA sequencing platform (scRNAseq) for yeast. By using scRNAseq, I can study the expression variability of many genes (i.e. how the transcriptomes of single cells differ from one another). To induce misfolding and study how single cells deal with this stress, I use engineered strains with varying degrees of an orthogonal misfolded protein. When I computationally cluster the cells expressing misfolded proteins by their sequenced transcriptomes, I see more cells with the severely misfolded protein in subpopulations undergoing canonical stress responses. For example, I see these cells tend to overexpress chaperones, and upregulate mitochondrial biogenesis and transmembrane transport. Both of these are hallmarks of the “Generalized” or “Environmental Stress Response” (ESR) in yeast. Interestingly, I do not see all components of the ESR upregulated in all cells, which may suggest that the massive transcriptional changes characteristic of the ESR are an artifact of having defined the ESR in bulk studies. Instead, I see some cells activate chaperones, while others activate respiration in response to stress. Another intriguing finding is that growth supporting proteins, such as ribosomes, have particularly heterogeneous expression levels in cells expressing misfolded proteins. This suggests that these cells potentially reallocate their metabolic functions at the expense of growth but not all cells respond the same. In sum, by using my novel single-cell approach, I have gleaned new insights about how cells respond to stress. which can help me better understand diseased cells. These results also teach how cells contend with mutation, which commonly causes protein misfolding and is the raw material of evolution. My results are the first to explore single-cell transcriptional responses to protein misfolding and suggest that the toxicity from misfolded proteins may affect some cells’ transcriptomes differently than others.
ContributorsEder, Rachel (Author) / Geiler-Samerotte, Kerry (Thesis advisor) / Brettner, Leandra (Committee member) / Wideman, Jeremy (Committee member) / Arizona State University (Publisher)
Created2023
171685-Thumbnail Image.png
Description
Insecticide resistance is a continuing issue that negatively affects both public health and agriculture and allows vector-borne diseases to spread throughout the globe. To improve resistance management strategies (RMS), robust susceptibility bioassays need to be performed in order to fill the gap of the relationship between resistant and susceptible genotype

Insecticide resistance is a continuing issue that negatively affects both public health and agriculture and allows vector-borne diseases to spread throughout the globe. To improve resistance management strategies (RMS), robust susceptibility bioassays need to be performed in order to fill the gap of the relationship between resistant and susceptible genotype and phenotype, and a deeper knowledge of how bioassay data relates to vector control success or failure is imperative. A bioassay method that is infrequently used but yields robust results is the topical application bioassay, where the insect is directly treated with a constant volume and concentration of an insecticide via a syringe. To bring more attention to this method, my colleagues and I published a paper in the Journal of Visualized Experiments where the optimized protocol of the topical application bioassay for mosquitoes and fruit flies is described, and the strengths and limitations to the method are explained. To further investigate insecticide susceptibility tests, I set up my individual project where I used Aedes aegypti mosquitoes to compare the topical application bioassay to the commonly used Centers for Disease Control and Prevention (CDC) bottle bioassay and World Health Organization (WHO) tube test. The objective of this study was to test which method exhibited the most variability in mortality results, which would guide the choice of assay to determine the link between resistant and susceptible genotype and phenotype. The results showed that the topical application method did indeed exhibit the least amount of variation, followed by the CDC bottle bioassay (WHO data is currently being collected). This suggests that the topical application bioassay could be a useful tool in insecticide resistance surveillance studies, and, depending on the goal, may be better than the CDC and WHO tube tests for assessing resistance levels at a given site. This study challenges the value of the widely used CDC and WHO assays and provides a discussion on the importance of technical and practical resistance assays. This will help vector control specialists to collect accurate surveillance data that will inform effective RMS.
ContributorsAlthoff, Rachel (Author) / Huijben, Silvie (Thesis advisor) / Harris, Robin (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2022
191702-Thumbnail Image.png
Description
Vector control plays an important role in the prevention and control of mosquito-borne diseases (MBDs). As there are no (prophylactic) drugs and/or vaccines available for many arboviral diseases (such as zika, chikungunya, Saint Louis encephalitis, Ross River virus), the frontline approach to prevent or reduce disease morbidity and mortality is

Vector control plays an important role in the prevention and control of mosquito-borne diseases (MBDs). As there are no (prophylactic) drugs and/or vaccines available for many arboviral diseases (such as zika, chikungunya, Saint Louis encephalitis, Ross River virus), the frontline approach to prevent or reduce disease morbidity and mortality is through the reduction of the mosquito vector population size and/or reducing vector-human contact using insecticides. Frontline tools in malaria (an MBD caused by a parasite) control and elimination have been drugs (targeting the malaria parasite) and insecticides (targeting the vectors) through indoor residual spraying (IRS) (spraying the internal walls and sometimes the roofs of dwellings with residual insecticides to kill adult mosquito vectors), and long-lasting insecticidal nets (LLINs), while arboviral vectors are frequently targeted using outdoor fogging and space spraying (indoor or outdoor spraying of insecticides to kill adult mosquito vectors). Integrative and novel vector control efforts are urgently needed since the aforementioned tools may not be as effective against those mosquito species that are resistant to insecticides and/or have a different (or changed) behavior allowing them to avoid existing tools. In Chapters 2 and 3, I investigate mosquito vector surveillance in Arizona by (i) discussing the species composition and public health implications of the State’s mosquito fauna, and (ii) comparing the effectiveness of 4 different carbon dioxide (CO2) sources in attracting different mosquito species on the Arizona State University Tempe Campus. In Chapters 4 and 5, I investigate a novel vector control tool by (i) completing a literature review on using electric fields (EFs) to control insects, and (ii) presenting novel data on using Insulated Conductor Wires (ICWs) to generate EFs that prevent host-seeking female Aedes aegypti from entering spaces. In Chapter 6, I discuss the non-target effects of chemical malaria control on other arthropods, including other biological and mechanical infectious disease vectors. Overall, this dissertation highlights the important role that the development of novel surveillance and vector control tools could play in improved mosquito control, which ultimately will reduce disease morbidity and mortality.
ContributorsJobe, Ndey Bassin (Author) / Paaijmans, Krijn (Thesis advisor) / Cease, Arianne (Committee member) / Hall, Sharon (Committee member) / Huijben, Silvie (Committee member) / Arizona State University (Publisher)
Created2024
157580-Thumbnail Image.png
Description
Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date,

Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date, viruses associated with arachnids have been under sampled and understudied. Here viral metagenomics was used to explore the diversity of viruses present in ticks and scorpions. American dog ticks (Dermacentor variabilis) and blacklegged ticks (Ixodes scapularis) were collected in Pennsylvania while one hairy scorpion (Hadrurus arizonensis) and four bark scorpions (Centruroides sculpturatus) were collected in Phoenix. Novel viral genomes described here belong to the families Polyomaviridae, Anelloviridae, Genomoviridae, and a newly proposed family, Arthropolviridae.

Polyomaviruses are non-enveloped viruses with a small, circular double-stranded DNA (dsDNA) genomes that have been identified in a variety of mammals, birds and fish and are known to cause various diseases. Arthropolviridae is a proposed family of circular, large tumor antigen encoding dsDNA viruses that have a unidirectional genome organization. Genomoviruses and anelloviruses are ssDNA viruses that have circular genomes ranging in size from 2–2.4 kb and 2.1–3.8 kb, respectively. Genomoviruses are ubiquitous in the environment, having been identified in a wide range of animal, plant and environmental samples, while anelloviruses have been associated with a plethora of animals.

Here, 16 novel viruses are reported that span four viral families. Eight novel polyomaviruses were recovered from bark scorpions, three arthropolviruses were recovered from dog ticks and one arthropolvirus from a hairy scorpion. Viruses belonging to the families Polyomaviridae and Arthropolviridae are highly divergent. This is the first more extensive study of these viruses in arachnids. Three genomoviruses were recovered from both dog and deer ticks and one anellovirus was recovered from deer ticks, which are the first records of these viruses being recovered from ticks. This work highlights the diversity of dsDNA and ssDNA viruses in the arachnid population and emphasizes the importance of performing viral surveys on these populations.
ContributorsSchmidlin, Kara (Author) / Varsani, Arvind (Thesis advisor) / Van Doorslaer, Koenraad (Committee member) / Stenglein, Mark (Committee member) / Arizona State University (Publisher)
Created2019
190832-Thumbnail Image.png
Description
Viruses are the most abundant biological entities on Earth, infecting all types of cellular organisms. Yet less than 1% of the virosphere on our planet has been characterized to date. Viruses are both an important driver of bacterial evolution and have significant implications for human health, therefore understanding the relative

Viruses are the most abundant biological entities on Earth, infecting all types of cellular organisms. Yet less than 1% of the virosphere on our planet has been characterized to date. Viruses are both an important driver of bacterial evolution and have significant implications for human health, therefore understanding the relative contributions of various evolutionary forces in shaping their genomic landscapes is of critical importance both mechanistically as well as clinically. In my thesis I use computational genomic approaches to gain novel insights into bacteriophage and human cytomegalovirus evolution. In my first two chapters and associated appendices I characterized the complete genomes of the Cluster P bacteriophage Phegasus and Cluster DR bacteriophage BiggityBass, whose isolation hosts were Mycobacterium smegmatis mc²155 and Gordonia terrae CAG3, respectively. I also determined the bacteriophages' phylogenetic placement and computationally inferred their putative host ranges. For my fourth chapter I assessed the performance of several of these computational host range prediction tools using a dataset of bacteriophages whose host ranges have been experimentally validated. Finally, in my fifth chapter I reviewed the key parameters for developing an evolutionary baseline model of another virus, human cytomegalovirus.
ContributorsHowell, Abigail Ann (Author) / Pfeifer, Susanne P (Thesis advisor) / Jensen, Jeffrey (Committee member) / Snyder-Mackler, Noah (Committee member) / Geiler-Samerotte, Kerry (Committee member) / Arizona State University (Publisher)
Created2023
190922-Thumbnail Image.png
Description
Mutation is the source of heritable variation of genotype and phenotype, on which selection may act. Mutation rates describe a fundamental parameter of living things, which influence the rate at which evolution may occur, from viral pathogens to human crops and even to aging cells and the emergence of cancer.

Mutation is the source of heritable variation of genotype and phenotype, on which selection may act. Mutation rates describe a fundamental parameter of living things, which influence the rate at which evolution may occur, from viral pathogens to human crops and even to aging cells and the emergence of cancer. An understanding of the variables which impact mutation rates and their estimation is necessary to place mutation rate estimates in their proper contexts. To better understand mutation rate estimates, this research investigates the impact of temperature upon transcription rate error estimates; the impact of growing cells in liquid culture vs. on agar plates; the impact of many in vitro variables upon the estimation of deoxyribonucleic acid (DNA) mutation rates from a single sample; and the mutational hazard induced by expressing clustered regularly interspaced short palindromic repeat (CRISPR) proteins in yeast. This research finds that many of the variables tested did not significantly alter the estimation of mutation rates, strengthening the claims of previous mutation rate estimates across the tree of life by diverse experimental approaches. However, it is clear that sonication is a mutagen of DNA, part of an effort which has reduced the sequencing error rate of circle-seq by over 1,000-fold. This research also demonstrates that growth in liquid culture modestly skews the mutation spectrum of MMR- Escherichia coli, though it does not significantly impact the overall mutation rate. Finally, this research demonstrates a modest mutational hazard of expressing Cas9 and similar CRISPR proteins in yeast cells at an un-targeted genomic locus, though it is possible the indel rate has been increased by an order of magnitude.
ContributorsBaehr, Stephan (Author) / Lynch, Michael (Thesis advisor) / Geiler-Samerotte, Kerry (Committee member) / Mangone, Marco (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2023