Matching Items (137)
Filtering by
- Genre: Academic theses
- Creators: Davulcu, Hasan
- Member of: ASU Electronic Theses and Dissertations
- Member of: Theses and Dissertations

Navigating within non-linear structures is a challenge for all users when the space is large but the problem is most pronounced when the users are blind or visually impaired. Such users access digital content through screen readers like JAWS which read out the text on the screen. However presentation of non-linear narratives in such a manner without visual cues and information about spatial dependencies is very inefficient for such users. The NSDL Science Literacy StrandMaps are visual layouts to help students and teachers browse educational resources. A Strandmap shows relationships between concepts and how they build upon one another across grade levels. NSDL Strandmaps are non-linear narratives which need to be presented to users who are blind in an effective way. A good summary of the Strandmap can give the users an idea about the concepts that are explained in it. This can help them decide whether to view the map or not. In addition, a preview-based navigation mechanism can help users decide which direction they want to take, based on a preview of upcoming content in each direction. Given a non-linear narrative like a Strandmap which has both text and structure, and a word limit w, the goal of this thesis is to find the best way to create its summary. The following approaches are considered: – Purely Text-based Approach using a Multi-document Text Summarizer – Purely Structure-based Approach using PageRank – Approaches Combining both Text and Structure → CUTS-Based Approach (Topic Segmentation) → PageRank with Content Since no reference summaries for such structures were available, user studies were conducted to evaluate these algorithms. PageRank with Content approach performed the best. Another important conclusion was that text and structure are intertwined in a Strandmap by design.

Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform additionally specifies the Java Native Interface (JNI). JNI allows Java code that runs within a JVM to interoperate with applications or libraries that are written in other languages and compiled to the host CPU ISA. JNI plays an important role in embedded system as it provides a mechanism to interact with libraries specific to the platform. This thesis addresses the overhead incurred in the JNI due to reflection and serialization when objects are accessed on android based mobile devices. It provides techniques to reduce this overhead. It also provides an API to access objects through its reference through pinning its memory location. The Android emulator was used to evaluate the performance of these techniques and we observed that there was 5 - 10 % performance gain in the new Java Native Interface.

As pointed out in the keynote speech by H. V. Jagadish in SIGMOD'07, and also commonly agreed in the database community, the usability of structured data by casual users is as important as the data management systems' functionalities. A major hardness of using structured data is the problem of easily retrieving information from them given a user's information needs. Learning and using a structured query language (e.g., SQL and XQuery) is overwhelmingly burdensome for most users, as not only are these languages sophisticated, but the users need to know the data schema. Keyword search provides us with opportunities to conveniently access structured data and potentially significantly enhances the usability of structured data. However, processing keyword search on structured data is challenging due to various types of ambiguities such as structural ambiguity (keyword queries have no structure), keyword ambiguity (the keywords may not be accurate), user preference ambiguity (the user may have implicit preferences that are not indicated in the query), as well as the efficiency challenges due to large search space. This dissertation performs an expansive study on keyword search processing techniques as a gateway for users to access structured data and retrieve desired information. The key issues addressed include: (1) Resolving structural ambiguities in keyword queries by generating meaningful query results, which involves identifying relevant keyword matches, identifying return information, composing query results based on relevant matches and return information. (2) Resolving structural, keyword and user preference ambiguities through result analysis, including snippet generation, result differentiation, result clustering, result summarization/query expansion, etc. (3) Resolving the efficiency challenge in processing keyword search on structured data by utilizing and efficiently maintaining materialized views. These works deliver significant technical contributions towards building a full-fledged search engine for structured data.

Analysis of political texts, which contains a huge amount of personal political opinions, sentiments, and emotions towards powerful individuals, leaders, organizations, and a large number of people, is an interesting task, which can lead to discover interesting interactions between the political parties and people. Recently, political blogosphere plays an increasingly important role in politics, as a forum for debating political issues. Most of the political weblogs are biased towards their political parties, and they generally express their sentiments towards their issues (i.e. leaders, topics etc.,) and also towards issues of the opposing parties. In this thesis, I have modeled the above interactions/debate as a sentimental bi-partite graph, a bi-partite graph with Blogs forming vertices of a disjoint set, and the issues (i.e. leaders, topics etc.,) forming the other disjoint set,and the edges between the two sets representing the sentiment of the blogs towards the issues. I have used American Political blog data to model the sentimental bi- partite graph, in particular, a set of popular political liberal and conservative blogs that have clearly declared positions. These blogs contain discussion about social, political, economic issues and related key individuals in their conservative/liberal view. To be more focused and more polarized, 22 most popular liberal/conservative blogs of a particular time period, May 2008 - October 2008(because of high intensity of debate and discussions), just before the presidential elections, was considered, involving around 23,800 articles. This thesis involves solving the questions: a) which is the most liberal/conservative blogs on the web? b) Who is on which side of debate and what are the issues? c) Who are the important leaders? d) How do you model the relationship between the participants of the debate and the underlying issues?

The overall contribution of the Minerva Initiative at ASU is to map social organizations in a multidimensional space that provides a measure of their radical or counter radical influence over the demographics of a nation. This tool serves as a simple content management system to store and track project resources like documents, images, videos and web links. It provides centralized and secure access to email conversations among project team members. Conversations are categorized into one of the seven pre-defined categories. Each category is associated with a certain set of keywords and we follow a frequency based approach for matching email conversations with the categories. The interface is hosted as a web application which can be accessed by the project team.

Muslim radicalism is recognized as one of the greatest security threats for the United States and the rest of the world. Use of force to eliminate specific radical entities is ineffective in containing radicalism as a whole. There is a need to understand the origin, ideologies and behavior of Radical and Counter-Radical organizations and how they shape up over a period of time. Recognizing and supporting counter-radical organizations is one of the most important steps towards impeding radical organizations. A lot of research has already been done to categorize and recognize organizations, to understand their behavior, their interactions with other organizations, their target demographics and the area of influence. We have a huge amount of information which is a result of the research done over these topics. This thesis provides a powerful and interactive way to navigate through all this information, using a Visualization Dashboard. The dashboard makes it easier for Social Scientists, Policy Analysts, Military and other personnel to visualize an organization's propensity towards violence and radicalism. It also tracks the peaking religious, political and socio-economic markers, their target demographics and locations. A powerful search interface with parametric search helps in narrowing down to specific scenarios and view the corresponding information related to the organizations. This tool helps to identify moderate Counter-Radical organizations and also has the potential of predicting the orientation of various organizations based on the current information.

The wide adoption and continued advancement of information and communications technologies (ICT) have made it easier than ever for individuals and groups to stay connected over long distances. These advances have greatly contributed in dramatically changing the dynamics of the modern day workplace to the point where it is now commonplace to see large, distributed multidisciplinary teams working together on a daily basis. However, in this environment, motivating, understanding, and valuing the diverse contributions of individual workers in collaborative enterprises becomes challenging. To address these issues, this thesis presents the goals, design, and implementation of Taskville, a distributed workplace game played by teams on large, public displays. Taskville uses a city building metaphor to represent the completion of individual and group tasks within an organization. Promising results from two usability studies and two longitudinal studies at a multidisciplinary school demonstrate that Taskville supports personal reflection and improves team awareness through an engaging workplace activity.

US Senate is the venue of political debates where the federal bills are formed and voted. Senators show their support/opposition along the bills with their votes. This information makes it possible to extract the polarity of the senators. Similarly, blogosphere plays an increasingly important role as a forum for public debate. Authors display sentiment toward issues, organizations or people using a natural language.
In this research, given a mixed set of senators/blogs debating on a set of political issues from opposing camps, I use signed bipartite graphs for modeling debates, and I propose an algorithm for partitioning both the opinion holders (senators or blogs) and the issues (bills or topics) comprising the debate into binary opposing camps. Simultaneously, my algorithm scales the entities on a univariate scale. Using this scale, a researcher can identify moderate and extreme senators/blogs within each camp, and polarizing versus unifying issues. Through performance evaluations I show that my proposed algorithm provides an effective solution to the problem, and performs much better than existing baseline algorithms adapted to solve this new problem. In my experiments, I used both real data from political blogosphere and US Congress records, as well as synthetic data which were obtained by varying polarization and degree distribution of the vertices of the graph to show the robustness of my algorithm.
I also applied my algorithm on all the terms of the US Senate to the date for longitudinal analysis and developed a web based interactive user interface www.PartisanScale.com to visualize the analysis.
US politics is most often polarized with respect to the left/right alignment of the entities. However, certain issues do not reflect the polarization due to political parties, but observe a split correlating to the demographics of the senators, or simply receive consensus. I propose a hierarchical clustering algorithm that identifies groups of bills that share the same polarization characteristics. I developed a web based interactive user interface www.ControversyAnalysis.com to visualize the clusters while providing a synopsis through distribution charts, word clouds, and heat maps.

In trading, volume is a measure of how much stock has been exchanged in a given period of time. Since every stock is distinctive and has an alternate measure of shares, volume can be contrasted with historical volume inside a stock to spot changes. It is likewise used to affirm value patterns, breakouts, and spot potential reversals. In my thesis, I hypothesize that the concept of trading volume can be extrapolated to social media (Twitter).
The ubiquity of social media, especially Twitter, in financial market has been overly resonant in the past couple of years. With the growth of its (Twitter) usage by news channels, financial experts and pandits, the global economy does seem to hinge on 140 characters. By analyzing the number of tweets hash tagged to a stock, a strong relation can be established between the number of people talking about it, to the trading volume of the stock.
In my work, I overt this relation and find a state of the breakout when the volume goes beyond a characterized support or resistance level.

With the advent of social media and micro-blogging sites, people have become active in sharing their thoughts, opinions, ideologies and furthermore enforcing them on others. Users have become the source for the production and dissemination of real time information. The content posted by the users can be used to understand them and track their behavior. Using this content of the user, data analysis can be performed to understand their social ideology and affinity towards Radical and Counter-Radical Movements. During the process of expressing their opinions people use hashtags in their messages in Twitter. These hashtags are a rich source of information in understanding the content based relationship between the online users apart from the existing context based follower and friend relationship.
An intelligent visual dash-board system is necessary which can track the activities of the users and diffusion of the online social movements, identify the hot-spots in the users' network, show the geographic foot print of the users and to understand the socio-cultural, economic and political drivers for the relationship among different groups of the users.