Matching Items (172)

Filtering by

Clear all filters

149777-Thumbnail Image.png

Almond consumption and weight loss in obese and overweight adults

Description

Nut consumption, specifically almonds, have been shown to help maintain weight and influence disease risk factors in adult populations. Limited studies have been conducted examining the effect of a small dose of almonds on energy intake and body weight. The

Nut consumption, specifically almonds, have been shown to help maintain weight and influence disease risk factors in adult populations. Limited studies have been conducted examining the effect of a small dose of almonds on energy intake and body weight. The objective of this study was to determine the influence of pre-meal almond consumption on energy intake and weight in overweight and obese adults. In this study included 21, overweight or obese, participants who were considered healthy or had a controlled disease state. This 8-week parallel arm study, participants were randomized to consume an isocaloric amount of almonds, (1 oz) serving, or two (2 oz) cheese stick serving, 30 minutes before the dinner meal, 5 times per week. Anthropometric measurements including weight, waist circumference, and body fat percentage were recorded at baseline, week 1, 4, and 8. Measurement of energy intake was self-reported for two consecutive days at week 1, 4 and 8 using the ASA24 automated dietary program. The energy intake after 8 weeks of almond consumption was not significantly different when compared to the control group (p=0.965). In addition, body weight was not significantly reduced after 8 weeks of the almond intervention (p=0.562). Other parameters measured in this 8-week trial did not differ between the intervention and the control group. These data presented are underpowered and therefore inconclusive on the effects that 1 oz of almonds, in the diet, 5 per week has on energy intake and bodyweight.

Contributors

Agent

Created

Date Created
2011

149767-Thumbnail Image.png

Almond consumption and dietary compensation in overweight and obese adults

Description

ABSTRACT Epidemiological studies have suggested a link between nut consumption and weight. The possible effects of regular nut consumption as a method of weight loss has shown minimal results with 2-3 servings of nut products per day. This 8 week

ABSTRACT Epidemiological studies have suggested a link between nut consumption and weight. The possible effects of regular nut consumption as a method of weight loss has shown minimal results with 2-3 servings of nut products per day. This 8 week study sought to investigate the effect of more modest nut consumption (1 oz./day, 5 days/week) on dietary compensation in healthy overweight individuals. Overweight and obese participants (n = 28) were recruited from the local community and were randomly assigned to either almond (NUT) or control (CON) group in this randomized, parallel-arm study. Subjects were instructed to eat their respective foods 30 minutes before the dinner meal. 24 hour diet recalls were completed pre-trial and at study weeks 1, 4 and 8. Self-reported satiety data were completed at study weeks 1, 4, and 8. Attrition was unexpectedly high, with 13 participants completing 24 dietary recall data through study week 8. High attrition limited statistical analyses. Results suggested a lack of effect for time or interaction for satiety data (within groups p = 0.997, between groups p = 0.367). Homogeneity of of inter-correlations could not be tested for 24-hour recall data as there were fewer than 2 nonsingular cell covariance matrices. In conclusion, this study was unable to prove or disprove the effectiveness of almonds to induce dietary compensation.

Contributors

Agent

Created

Date Created
2011

152307-Thumbnail Image.png

Adaptive learning and unsupervised clustering of immune responses using microarray random sequence peptides

Description

Immunosignaturing is a medical test for assessing the health status of a patient by applying microarrays of random sequence peptides to determine the patient's immune fingerprint by associating antibodies from a biological sample to immune responses. The immunosignature measurements can

Immunosignaturing is a medical test for assessing the health status of a patient by applying microarrays of random sequence peptides to determine the patient's immune fingerprint by associating antibodies from a biological sample to immune responses. The immunosignature measurements can potentially provide pre-symptomatic diagnosis for infectious diseases or detection of biological threats. Currently, traditional bioinformatics tools, such as data mining classification algorithms, are used to process the large amount of peptide microarray data. However, these methods generally require training data and do not adapt to changing immune conditions or additional patient information. This work proposes advanced processing techniques to improve the classification and identification of single and multiple underlying immune response states embedded in immunosignatures, making it possible to detect both known and previously unknown diseases or biothreat agents. Novel adaptive learning methodologies for un- supervised and semi-supervised clustering integrated with immunosignature feature extraction approaches are proposed. The techniques are based on extracting novel stochastic features from microarray binding intensities and use Dirichlet process Gaussian mixture models to adaptively cluster the immunosignatures in the feature space. This learning-while-clustering approach allows continuous discovery of antibody activity by adaptively detecting new disease states, with limited a priori disease or patient information. A beta process factor analysis model to determine underlying patient immune responses is also proposed to further improve the adaptive clustering performance by formatting new relationships between patients and antibody activity. In order to extend the clustering methods for diagnosing multiple states in a patient, the adaptive hierarchical Dirichlet process is integrated with modified beta process factor analysis latent feature modeling to identify relationships between patients and infectious agents. The use of Bayesian nonparametric adaptive learning techniques allows for further clustering if additional patient data is received. Significant improvements in feature identification and immune response clustering are demonstrated using samples from patients with different diseases.

Contributors

Agent

Created

Date Created
2013

152099-Thumbnail Image.png

Eating in the absence of hunger in college students

Description

The body is capable of regulating hunger in several ways. Some of these hunger regulation methods are innate, such as genetics, and some, such as the responses to stress and to the smell of food, are innate but can be

The body is capable of regulating hunger in several ways. Some of these hunger regulation methods are innate, such as genetics, and some, such as the responses to stress and to the smell of food, are innate but can be affected by body conditions such as BMI and physical activity. Further, some hunger regulation methods stem from learned behaviors originating from cultural pressures or parenting styles. These latter regulation methods for hunger can be grouped into the categories: emotion, environment, and physical. The factors that regulate hunger can also influence the incidence of disordered eating, such as eating in the absence of hunger (EAH). Eating in the absence of hunger can occur in one of two scenarios, continuous EAH or beginning EAH. College students are at a particularly high risk for EAH and weight gain due to stress, social pressures, and the constant availability of energy dense and nutrient poor food options. The purpose of this study is to validate a modified EAH-C survey in college students and to discover which of the three latent factors (emotion, environment, physical) best predicts continual and beginning EAH. To do so, a modified EAH-C survey, with additional demographic components, was administered to students at a major southwest university. This survey contained two questions, one each for continuing and beginning EAH, regarding 14 factors related to emotional, physical, or environmental reasons that may trigger EAH. The results from this study revealed that the continual and beginning EAH surveys displayed good internal consistency reliability. We found that for beginning and continuing EAH, although emotion is the strongest predictor of EAH, all three latent factors are significant predictors of EAH. In addition, we found that environmental factors had the greatest influence on an individual's likelihood to continue to eat in the absence of hunger. Due to statistical abnormalities and differing numbers of factors in each category, we were unable to determine which of the three factors exerted the greatest influence on an individual's likelihood to begin eating in the absence of hunger. These results can be utilized to develop educational tools aimed at reducing EAH in college students, and ultimately reducing the likelihood for unhealthy weight gain and health complications related to obesity.

Contributors

Agent

Created

Date Created
2013

151215-Thumbnail Image.png

Energy and quality-aware multimedia signal processing

Description

Today's mobile devices have to support computation-intensive multimedia applications with a limited energy budget. In this dissertation, we present architecture level and algorithm-level techniques that reduce energy consumption of these devices with minimal impact on system quality. First, we present

Today's mobile devices have to support computation-intensive multimedia applications with a limited energy budget. In this dissertation, we present architecture level and algorithm-level techniques that reduce energy consumption of these devices with minimal impact on system quality. First, we present novel techniques to mitigate the effects of SRAM memory failures in JPEG2000 implementations operating in scaled voltages. We investigate error control coding schemes and propose an unequal error protection scheme tailored for JPEG2000 that reduces overhead without affecting the performance. Furthermore, we propose algorithm-specific techniques for error compensation that exploit the fact that in JPEG2000 the discrete wavelet transform outputs have larger values for low frequency subband coefficients and smaller values for high frequency subband coefficients. Next, we present use of voltage overscaling to reduce the data-path power consumption of JPEG codecs. We propose an algorithm-specific technique which exploits the characteristics of the quantized coefficients after zig-zag scan to mitigate errors introduced by aggressive voltage scaling. Third, we investigate the effect of reducing dynamic range for datapath energy reduction. We analyze the effect of truncation error and propose a scheme that estimates the mean value of the truncation error during the pre-computation stage and compensates for this error. Such a scheme is very effective for reducing the noise power in applications that are dominated by additions and multiplications such as FIR filter and transform computation. We also present a novel sum of absolute difference (SAD) scheme that is based on most significant bit truncation. The proposed scheme exploits the fact that most of the absolute difference (AD) calculations result in small values, and most of the large AD values do not contribute to the SAD values of the blocks that are selected. Such a scheme is highly effective in reducing the energy consumption of motion estimation and intra-prediction kernels in video codecs. Finally, we present several hybrid energy-saving techniques based on combination of voltage scaling, computation reduction and dynamic range reduction that further reduce the energy consumption while keeping the performance degradation very low. For instance, a combination of computation reduction and dynamic range reduction for Discrete Cosine Transform shows on average, 33% to 46% reduction in energy consumption while incurring only 0.5dB to 1.5dB loss in PSNR.

Contributors

Agent

Created

Date Created
2012

151216-Thumbnail Image.png

Individual differences in taste perception and bitterness masking

Description

The unpleasant bitter taste found in many nutritious vegetables may deter people from consuming a healthy diet. We investigated individual differences in taste perception and whether these differences influence the effectiveness of bitterness masking. To test whether phenylthiocarbamide (PTC) `supertasters'

The unpleasant bitter taste found in many nutritious vegetables may deter people from consuming a healthy diet. We investigated individual differences in taste perception and whether these differences influence the effectiveness of bitterness masking. To test whether phenylthiocarbamide (PTC) `supertasters' also taste salt and sugar with greater intensity, as suggested by Bartoshuk and colleagues (2004), we infused strips of paper with salt water or sugar water. The bitterness rating of the PTC strip had a significant positive linear relationship with ratings of both the intensity of sweet and salt, but the effect sizes were very low, suggesting that the PTC strip does not give a complete picture of tasting ability. Next we investigated whether various seasonings could mask the bitter taste of vegetables and whether this varied with tasting ability. We found that sugar decreased bitterness and lemon decreased liking for vegetables of varying degrees of bitterness. The results did not differ by ability to taste any of the flavors. Therefore, even though there are remarkable individual differences in taste perception, sugar can be used to improve the initial palatability of vegetables and increase their acceptance and consumption.

Contributors

Agent

Created

Date Created
2012

152435-Thumbnail Image.png

Vitamin C is not related to resting fat oxidation in healthy, non-obese adults

Description

ABSTRACT Vitamin C plays an important role in fatty acid metabolism because it is required for carnitine synthesis. Vitamin C has been shown to have an inverse relationship with weight and body fat percent in a number of studies. However,

ABSTRACT Vitamin C plays an important role in fatty acid metabolism because it is required for carnitine synthesis. Vitamin C has been shown to have an inverse relationship with weight and body fat percent in a number of studies. However, there has been limited research exploring the relationship between vitamin C status and fat oxidation. This cross-sectional study investigates the relationship between plasma vitamin C and fat oxidation in 69 participants and between plasma vitamin C and body fatness in 82 participants. Participants were measured for substrate utilization via indirect calorimetry while at rest and measured for body fatness via DEXA scan. Participants provided a single fasting blood draw for analysis of plasma vitamin C. Results did not show a significant association between vitamin C and fat oxidation while at rest, therefore the data do not support the hypothesis that vitamin C status affects fat oxidation in a resting state. However, a significant inverse association was found between vitamin C and both total body fat percent and visceral fat.

Contributors

Agent

Created

Date Created
2014

152443-Thumbnail Image.png

iPhone applications and improvement in weight and health parameters: a randomized controlled trial

Description

Dietary counseling from a registered dietitian has been shown in previous studies to aid in weight loss for those receiving counseling. With the increasing use of smartphone diet/weight loss applications (app), this study sought to investigate if an iPhone diet

Dietary counseling from a registered dietitian has been shown in previous studies to aid in weight loss for those receiving counseling. With the increasing use of smartphone diet/weight loss applications (app), this study sought to investigate if an iPhone diet app providing feedback from a registered dietitian improved weight loss and bio-markers of health. Twenty-four healthy adults who owned iPhones (BMI > 24 kg/m2) completed this trial. Participants were randomly assigned to one of three app groups: the MyDietitian app with daily feedback from a registered dietitian (n=7), the MyDietitian app without feedback (n=7), and the MyPlate feedback control app (n=10). Participants used their respective diet apps daily for 8-weeks while their weight loss, adherence to self-monitoring, blood bio-markers of health, and physical activity were monitored. All of the groups had a significant reduction in waist and hip circumference (p<0.001), a reduction in A1c (p=0.002), an increase in HDL cholesterol levels (p=0.012), and a reduction in calories consumed (p=0.022) over the duration of the trial. Adherence to diet monitoring via the apps did not differ between groups during the study. Body weight did not change during the study for any groups. However, when the participants were divided into low (<50% of days) or high adherence (>50% of days) groups, irrespective of study group, the high adherence group had a significant reduction in weight when compared to the low adherence group (p=0.046). These data suggest that diet apps may be useful tools for self-monitoring and even weight loss, but that the value appears to be the self-monitoring process and not the app specifically.

Contributors

Agent

Created

Date Created
2014

152459-Thumbnail Image.png

Improving the reliability of NAND Flash, phase-change RAM and spin-torque transfer RAM

Description

Non-volatile memories (NVM) are widely used in modern electronic devices due to their non-volatility, low static power consumption and high storage density. While Flash memories are the dominant NVM technology, resistive memories such as phase change access memory (PRAM) and

Non-volatile memories (NVM) are widely used in modern electronic devices due to their non-volatility, low static power consumption and high storage density. While Flash memories are the dominant NVM technology, resistive memories such as phase change access memory (PRAM) and spin torque transfer random access memory (STT-MRAM) are gaining ground. All these technologies suffer from reliability degradation due to process variations, structural limits and material property shift. To address the reliability concerns of these NVM technologies, multi-level low cost solutions are proposed for each of them. My approach consists of first building a comprehensive error model. Next the error characteristics are exploited to develop low cost multi-level strategies to compensate for the errors. For instance, for NAND Flash memory, I first characterize errors due to threshold voltage variations as a function of the number of program/erase cycles. Next a flexible product code is designed to migrate to a stronger ECC scheme as program/erase cycles increases. An adaptive data refresh scheme is also proposed to improve memory reliability with low energy cost for applications with different data update frequencies. For PRAM, soft errors and hard errors models are built based on shifts in the resistance distributions. Next I developed a multi-level error control approach involving bit interleaving and subblock flipping at the architecture level, threshold resistance tuning at the circuit level and programming current profile tuning at the device level. This approach helped reduce the error rate significantly so that it was now sufficient to use a low cost ECC scheme to satisfy the memory reliability constraint. I also studied the reliability of a PRAM+DRAM hybrid memory system and analyzed the tradeoffs between memory performance, programming energy and lifetime. For STT-MRAM, I first developed an error model based on process variations. I developed a multi-level approach to reduce the error rates that consisted of increasing the W/L ratio of the access transistor, increasing the voltage difference across the memory cell and adjusting the current profile during write operation. This approach enabled use of a low cost BCH based ECC scheme to achieve very low block failure rates.

Contributors

Agent

Created

Date Created
2014

152344-Thumbnail Image.png

Adaptive methods within a sequential Bayesian approach for structural health monitoring

Description

Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to

Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring approach is based on predicting crack damage state dynamics and modeling crack length observations. Since fatigue loading of a structural component can change while in service, an interacting multiple model technique is employed to estimate probabilities of different loading modes and incorporate this information in the crack length estimation problem. For the observation model, features are obtained from regions of high signal energy in the time-frequency plane and modeled for each crack length damage condition. Although this observation model approach exhibits high classification accuracy, the resolution characteristics can change depending upon the extent of the damage. Therefore, several different transmission waveforms and receiver sensors are considered to create multiple modes for making observations of crack damage. Resolution characteristics of the different observation modes are assessed using a predicted mean squared error criterion and observations are obtained using the predicted, optimal observation modes based on these characteristics. Calculation of the predicted mean square error metric can be computationally intensive, especially if performed in real time, and an approximation method is proposed. With this approach, the real time computational burden is decreased significantly and the number of possible observation modes can be increased. Using sensor measurements from real experiments, the overall sequential Bayesian estimation approach, with the adaptive capability of varying the state dynamics and observation modes, is demonstrated for tracking crack damage.

Contributors

Agent

Created

Date Created
2013