Matching Items (182)
Filtering by

Clear all filters

152030-Thumbnail Image.png
Description
Recently, the use of zinc oxide (ZnO) nanowires as an interphase in composite materials has been demonstrated to increase the interfacial shear strength between carbon fiber and an epoxy matrix. In this research work, the strong adhesion between ZnO and carbon fiber is investigated to elucidate the interactions at the

Recently, the use of zinc oxide (ZnO) nanowires as an interphase in composite materials has been demonstrated to increase the interfacial shear strength between carbon fiber and an epoxy matrix. In this research work, the strong adhesion between ZnO and carbon fiber is investigated to elucidate the interactions at the interface that result in high interfacial strength. First, molecular dynamics (MD) simulations are performed to calculate the adhesive energy between bare carbon and ZnO. Since the carbon fiber surface has oxygen functional groups, these were modeled and MD simulations showed the preference of ketones to strongly interact with ZnO, however, this was not observed in the case of hydroxyls and carboxylic acid. It was also found that the ketone molecules ability to change orientation facilitated the interactions with the ZnO surface. Experimentally, the atomic force microscope (AFM) was used to measure the adhesive energy between ZnO and carbon through a liftoff test by employing highly oriented pyrolytic graphite (HOPG) substrate and a ZnO covered AFM tip. Oxygen functionalization of the HOPG surface shows the increase of adhesive energy. Additionally, the surface of ZnO was modified to hold a negative charge, which demonstrated an increase in the adhesive energy. This increase in adhesion resulted from increased induction forces given the relatively high polarizability of HOPG and the preservation of the charge on ZnO surface. It was found that the additional negative charge can be preserved on the ZnO surface because there is an energy barrier since carbon and ZnO form a Schottky contact. Other materials with the same ionic properties of ZnO but with higher polarizability also demonstrated good adhesion to carbon. This result substantiates that their induced interaction can be facilitated not only by the polarizability of carbon but by any of the materials at the interface. The versatility to modify the magnitude of the induced interaction between carbon and an ionic material provides a new route to create interfaces with controlled interfacial strength.
ContributorsGalan Vera, Magdian Ulises (Author) / Sodano, Henry A (Thesis advisor) / Jiang, Hanqing (Committee member) / Solanki, Kiran (Committee member) / Oswald, Jay (Committee member) / Speyer, Gil (Committee member) / Arizona State University (Publisher)
Created2013
152099-Thumbnail Image.png
Description
The body is capable of regulating hunger in several ways. Some of these hunger regulation methods are innate, such as genetics, and some, such as the responses to stress and to the smell of food, are innate but can be affected by body conditions such as BMI and physical activity.

The body is capable of regulating hunger in several ways. Some of these hunger regulation methods are innate, such as genetics, and some, such as the responses to stress and to the smell of food, are innate but can be affected by body conditions such as BMI and physical activity. Further, some hunger regulation methods stem from learned behaviors originating from cultural pressures or parenting styles. These latter regulation methods for hunger can be grouped into the categories: emotion, environment, and physical. The factors that regulate hunger can also influence the incidence of disordered eating, such as eating in the absence of hunger (EAH). Eating in the absence of hunger can occur in one of two scenarios, continuous EAH or beginning EAH. College students are at a particularly high risk for EAH and weight gain due to stress, social pressures, and the constant availability of energy dense and nutrient poor food options. The purpose of this study is to validate a modified EAH-C survey in college students and to discover which of the three latent factors (emotion, environment, physical) best predicts continual and beginning EAH. To do so, a modified EAH-C survey, with additional demographic components, was administered to students at a major southwest university. This survey contained two questions, one each for continuing and beginning EAH, regarding 14 factors related to emotional, physical, or environmental reasons that may trigger EAH. The results from this study revealed that the continual and beginning EAH surveys displayed good internal consistency reliability. We found that for beginning and continuing EAH, although emotion is the strongest predictor of EAH, all three latent factors are significant predictors of EAH. In addition, we found that environmental factors had the greatest influence on an individual's likelihood to continue to eat in the absence of hunger. Due to statistical abnormalities and differing numbers of factors in each category, we were unable to determine which of the three factors exerted the greatest influence on an individual's likelihood to begin eating in the absence of hunger. These results can be utilized to develop educational tools aimed at reducing EAH in college students, and ultimately reducing the likelihood for unhealthy weight gain and health complications related to obesity.
ContributorsGoett, Taylor (Author) / Johnston, Carol (Thesis advisor) / Lee, Chong (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2013
151861-Thumbnail Image.png
Description
In October, 2009, participants of the Arizona Special Supplemental Nutrition Program for Women, Infants and Children (WIC) began receiving monthly Cash Value Vouchers (CVV) worth between six and 10 dollars towards the purchase of fresh fruits and vegetables. Data from the Arizona Department of Health Services (ADHS) showed CVV redemption

In October, 2009, participants of the Arizona Special Supplemental Nutrition Program for Women, Infants and Children (WIC) began receiving monthly Cash Value Vouchers (CVV) worth between six and 10 dollars towards the purchase of fresh fruits and vegetables. Data from the Arizona Department of Health Services (ADHS) showed CVV redemption rates in the first two years of the program were lower than the national average of 77% redemption. In response, the ADHS WIC Food List was expanded to also include canned and frozen fruits and vegetables. More recent data from ADHS suggest that redemption rates are improving, but variably exist among different WIC sub-populations. The purpose of this project was to identify themes related to the ease or difficulty of WIC CVV use amongst different categories of low-redeeming WIC participants. A total of 8 focus groups were conducted, four at a clinic in each of two Valley cities: Surprise and Mesa. Each of the four focus groups comprised one of four targeted WIC participant categories: pregnant, postpartum, breastfeeding, and children with participation ranging from 3-9 participants per group. Using the general inductive approach, recordings of the focus groups were transcribed, hand-coded and uploaded into qualitative analysis software resulting in four emergent themes including: interactions and shopping strategies, maximizing WIC value, redemption issues, and effect of rule change. Researchers identified twelve different subthemes related to the emergent theme of interactions and strategies to improve their experience, including economic considerations during redemption. Barriers related to interactions existed that made their purchase difficult, most notably anger from the cashier and other shoppers. However, participants made use of a number of strategies to facilitate WIC purchases or extract more value out of WIC benefits, such as pooling their CVV. Finally, it appears that the fruit and vegetable rule change was well received by those who were aware of the change. These data suggest a number of important avenues for future research, including verifying these themes are important within a larger, representative sample of Arizona WIC participants, and exploring strategies to minimize barriers identified by participants, such as use of electronic benefits transfer-style cards (EBT).
ContributorsBertmann, Farryl M. W (Author) / Wharton, Christopher (Christopher Mack), 1977- (Thesis advisor) / Ohri-Vachaspati, Punam (Committee member) / Johnston, Carol (Committee member) / Hampl, Jeffrey (Committee member) / Dixit-Joshi, Sujata (Committee member) / Barroso, Cristina (Committee member) / Arizona State University (Publisher)
Created2013
152040-Thumbnail Image.png
Description
"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small

"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small size devices are mainly concentrated around Micro-electro-mechanical-system (MEMS) technology. MEMS accelerometers are widely published and used in consumer electronics, such as smart phones, gaming consoles, anti-shake camera and vibration detectors. This study represents liquid-state low frequency micro-accelerometer based on molecular electronic transducer (MET), in which inertial mass is not the only but also the conversion of mechanical movement to electric current signal is the main utilization of the ionic liquid. With silicon-based planar micro-fabrication, the device uses a sub-micron liter electrolyte droplet sealed in oil as the sensing body and a MET electrode arrangement which is the anode-cathode-cathode-anode (ACCA) in parallel as the read-out sensing part. In order to sensing the movement of ionic liquid, an imposed electric potential was applied between the anode and the cathode. The electrode reaction, I_3^-+2e^___3I^-, occurs around the cathode which is reverse at the anodes. Obviously, the current magnitude varies with the concentration of ionic liquid, which will be effected by the movement of liquid droplet as the inertial mass. With such structure, the promising performance of the MET device design is to achieve 10.8 V/G (G=9.81 m/s^2) sensitivity at 20 Hz with the bandwidth from 1 Hz to 50 Hz, and a low noise floor of 100 ug/sqrt(Hz) at 20 Hz.
ContributorsLiang, Mengbing (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Kozicki, Micheal (Committee member) / Arizona State University (Publisher)
Created2013
151655-Thumbnail Image.png
Description
There are several visual dimensions of food that can affect food intake, example portion size, color, and variety. This dissertation elucidates the effect of number of pieces of food on preference and amount of food consumed in humans and motivation for food in animals. Chapter 2 Experiment 1 showed that

There are several visual dimensions of food that can affect food intake, example portion size, color, and variety. This dissertation elucidates the effect of number of pieces of food on preference and amount of food consumed in humans and motivation for food in animals. Chapter 2 Experiment 1 showed that rats preferred and also ran faster for multiple pieces (30, 10 mg pellets) than an equicaloric, single piece of food (300 mg) showing that multiple pieces of food are more rewarding than a single piece. Chapter 2 Experiment 2 showed that rats preferred a 30-pellet food portion clustered together rather than scattered. Preference and motivation for clustered food pieces may be interpreted based on the optimal foraging theory that animals prefer foods that can maximize energy gain and minimize the risk of predation. Chapter 3 Experiment 1 showed that college students preferred and ate less of a multiple-piece than a single-piece portion and also ate less in a test meal following the multiple-piece than single-piece portion. Chapter 3 Experiment 2 replicated the results in Experiment 1 and used a bagel instead of chicken. Chapter 4 showed that college students given a five-piece chicken portion scattered on a plate ate less in a meal and in a subsequent test meal than those given the same portion clustered together. This is consistent with the hypothesis that multiple pieces of food may appear like more food because they take up a larger surface area than a single-piece portion. All together, these studies show that number and surface area occupied by food pieces are important visual cues determining food choice in animals and both food choice and intake in humans.
ContributorsBajaj, Devina (Author) / Phillips, Elizabeth D. (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
151345-Thumbnail Image.png
Description
Woven fabric composite materials are widely used in the construction of aircraft engine fan containment systems, mostly due to their high strength to weight ratios and ease of implementation. The development of a predictive model for fan blade containment would provide great benefit to engine manufactures in shortened development cycle

Woven fabric composite materials are widely used in the construction of aircraft engine fan containment systems, mostly due to their high strength to weight ratios and ease of implementation. The development of a predictive model for fan blade containment would provide great benefit to engine manufactures in shortened development cycle time, less risk in certification and fewer dollars lost to redesign/recertification cycles. A mechanistic user-defined material model subroutine has been developed at Arizona State University (ASU) that captures the behavioral response of these fabrics, namely Kevlar® 49, under ballistic loading. Previously developed finite element models used to validate the consistency of this material model neglected the effects of the physical constraints imposed on the test setup during ballistic testing performed at NASA Glenn Research Center (NASA GRC). Part of this research was to explore the effects of these boundary conditions on the results of the numerical simulations. These effects were found to be negligible in most instances. Other material models for woven fabrics are available in the LS-DYNA finite element code. One of these models, MAT234: MAT_VISCOELASTIC_LOOSE_FABRIC (Ivanov & Tabiei, 2004) was studied and implemented in the finite element simulations of ballistic testing associated with the FAA ASU research. The results from these models are compared to results obtained from the ASU UMAT as part of this research. The results indicate an underestimation in the energy absorption characteristics of the Kevlar 49 fabric containment systems. More investigation needs to be performed in the implementation of MAT234 for Kevlar 49 fabric. Static penetrator testing of Kevlar® 49 fabric was performed at ASU in conjunction with this research. These experiments are designed to mimic the type of loading experienced during fan blade out events. The resulting experimental strains were measured using a non-contact optical strain measurement system (ARAMIS).
ContributorsFein, Jonathan (Author) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2012
151351-Thumbnail Image.png
Description
Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion

Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion cracking of face-centered cubic alloys. Corrosion of such alloys often results in the formation of a brittle nanoporous layer which we hypothesize serves to nucleate a crack that owing to dynamic effects penetrates into the un-dealloyed parent phase alloy. Thus, since there is essentially a purely mechanical component of cracking, stress corrosion crack propagation rates can be significantly larger than that predicted from electrochemical parameters. The main objective of this work is to examine and test this hypothesis under conditions relevant to stress corrosion cracking. Silver-gold alloys serve as a model system for this study since hydrogen effects can be neglected on a thermodynamic basis, which allows us to focus on a single cracking mechanism. In order to study various aspects of this problem, the dynamic fracture properties of monolithic nanoporous gold (NPG) were examined in air and under electrochemical conditions relevant to stress corrosion cracking. The detailed processes associated with the crack injection phenomenon were also examined by forming dealloyed nanoporous layers of prescribed properties on un-dealloyed parent phase structures and measuring crack penetration distances. Dynamic fracture in monolithic NPG and in crack injection experiments was examined using high-speed (106 frames s-1) digital photography. The tunable set of experimental parameters included the NPG length scale (20-40 nm), thickness of the dealloyed layer (10-3000 nm) and the electrochemical potential (0.5-1.5 V). The results of crack injection experiments were characterized using the dual-beam focused ion beam/scanning electron microscopy. Together these tools allow us to very accurately examine the detailed structure and composition of dealloyed grain boundaries and compare crack injection distances to the depth of dealloying. The results of this work should provide a basis for new mathematical modeling of dealloying induced stress corrosion cracking while providing a sound physical basis for the design of new alloys that may not be susceptible to this form of cracking. Additionally, the obtained results should be of broad interest to researchers interested in the fracture properties of nano-structured materials. The findings will open up new avenues of research apart from any implications the study may have for stress corrosion cracking.
ContributorsSun, Shaofeng (Author) / Sieradzki, Karl (Thesis advisor) / Jiang, Hanqing (Committee member) / Peralta, Pedro (Committee member) / Arizona State University (Publisher)
Created2012
151284-Thumbnail Image.png
Description
Dietary protein is known to increase postprandial thermogenesis more so than carbohydrates or fats, probably related to the fact that amino acids have no immediate form of storage in the body and can become toxic if not readily incorporated into body tissues or excreted. It is also well documented that

Dietary protein is known to increase postprandial thermogenesis more so than carbohydrates or fats, probably related to the fact that amino acids have no immediate form of storage in the body and can become toxic if not readily incorporated into body tissues or excreted. It is also well documented that subjects report greater satiety on high- versus low-protein diets and that subject compliance tends to be greater on high-protein diets, thus contributing to their popularity. What is not as well known is how a high-protein diet affects resting metabolic rate over time, and what is even less well known is if resting metabolic rate changes significantly when a person consuming an omnivorous diet suddenly adopts a vegetarian one. This pilot study sought to determine whether subjects adopting a vegetarian diet would report decreased satiety or demonstrate a decreased metabolic rate due to a change in protein intake and possible increase in carbohydrates. Further, this study sought to validate a new device called the SenseWear Armband (SWA) to determine if it might be sensitive enough to detect subtle changes in metabolic rate related to diet. Subjects were tested twice on all variables, at baseline and post-test. Independent and related samples tests revealed no significant differences between or within groups for any variable at any time point in the study. The SWA had a strong positive correlation to the Oxycon Mobile metabolic cart but due to a lack of change in metabolic rate, its sensitivity was undetermined. These data do not support the theory that adopting a vegetarian diet results in a long-term change in metabolic rate.
ContributorsMoore, Amy (Author) / Johnston, Carol (Thesis advisor) / Appel, Christy (Thesis advisor) / Gaesser, Glenn (Committee member) / Arizona State University (Publisher)
Created2012
151458-Thumbnail Image.png
Description
The focus of this investigation is on the optimum placement of a limited number of dampers, fewer than the number of blades, on a bladed disk to induce the smallest amplitude of blade response. The optimization process considers the presence of random mistuning, i.e. small involuntary variations in blade stiffness

The focus of this investigation is on the optimum placement of a limited number of dampers, fewer than the number of blades, on a bladed disk to induce the smallest amplitude of blade response. The optimization process considers the presence of random mistuning, i.e. small involuntary variations in blade stiffness properties resulting, say, from manufacturing variability. Designed variations of these properties, known as intentional mistuning, is considered as an option to reduce blade response and the pattern of two blade types (A and B blades) is then part of the optimization in addition to the location of dampers on the disk. First, this study focuses on the formulation and validation of dedicated algorithms for the selection of the damper locations and the intentional mistuning pattern. Failure of one or several of the dampers could lead to a sharp rise in blade response and this issue is addressed by including, in the optimization, the possibility of damper failure to yield a fail-safe solution. The high efficiency and accuracy of the optimization algorithms is assessed in comparison with computationally very demanding exhaustive search results. Second, the developed optimization algorithms are applied to nonlinear dampers (underplatform friction dampers), as well as to blade-blade dampers, both linear and nonlinear. Further, the optimization of blade-only and blade-blade linear dampers is extended to include uncertainty or variability in the damper properties induced by manufacturing or wear. It is found that the optimum achieved without considering such uncertainty is robust with respect to it. Finally, the potential benefits of using two different types of friction dampers differing in their masses (A and B types), on a bladed disk are considered. Both A/B pattern and the damper masses are optimized to obtain the largest benefit compared to using identical dampers of optimized masses on every blade. Four situations are considered: tuned disks, disks with random mistuning of blade stiffness, and, disks with random mistuning of both blade stiffness and damper normal forces with and without damper variability induced by manufacturing and wear. In all cases, the benefit of intentional mistuning of friction dampers is small, of the order of a few percent.
ContributorsMurthy, Raghavendra Narasimha (Author) / Mignolet, Marc P (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Lentz, Jeff (Committee member) / Chattopadhyay, Aditi (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2012
151503-Thumbnail Image.png
Description
Objective: Vinegar consumption studies have demonstrated possible therapeutic effects in reducing HbA1c and postprandial glycemia. The purpose of the study was to closely examine the effects of a commercial vinegar drink on daily fluctuations in fasting glucose concentrations and postprandial glycemia, and on HbA1c, in individuals at risk for Type

Objective: Vinegar consumption studies have demonstrated possible therapeutic effects in reducing HbA1c and postprandial glycemia. The purpose of the study was to closely examine the effects of a commercial vinegar drink on daily fluctuations in fasting glucose concentrations and postprandial glycemia, and on HbA1c, in individuals at risk for Type 2 Diabetes Mellitus (T2D). Design: Thirteen women and one man (21-62 y; mean, 46.0±3.9 y) participated in this 12-week parallel-arm trial. Participants were recruited from a campus community and were healthy and not diabetic by self-report. Participants were not prescribed oral hypoglycemic medications or insulin; other medications were allowed if use was stable for > 3 months. Subjects were randomized to one of two groups: VIN (8 ounces vinegar drink providing 1.5 g acetic acid) or CON (1 vinegar pill providing 0.04 g acetic acid). Treatments were taken twice daily immediately prior to the lunch and dinner meals. Venous blood samples were drawn at trial weeks 0 and 12 to measure insulin, fasting glucose, and HbA1c. Subjects recorded fasting glucose and 2-h postprandial glycemia concentrations daily using a glucometer. Results: The VIN group showed significant reductions in fasting capillary blood glucose concentrations (p=0.05) that were immediate and sustained throughout the duration of the study. The VIN group had reductions in 2-h postprandial glucose (mean change of −7.6±6.8 mg/dL over the 12-week trial), but this value was not significantly different than that for the CON group (mean change of 3.3±5.3 mg/dL over the 12-week trial, p=0.232). HbA1c did not significantly change (p=0.702), but the reduction in HbA1c in the VIN group, −0.14±0.1%, may have physiological relevance. Conclusions: Significant reductions in HbA1c were not observed after daily consumption of a vinegar drink containing 1.5 g acetic acid in non-diabetic individuals. However, the vinegar drink did significantly reduce fasting capillary blood glucose concentrations in these individuals as compared to a vinegar pill containing 0.04 g acetic acid. These results support a therapeutic effect for vinegar in T2D prevention and progression, specifically in high-risk populations.
ContributorsQuagliano, Samantha (Author) / Johnston, Carol (Thesis advisor) / Appel, Christy (Committee member) / Dixon, Kathleen (Committee member) / Arizona State University (Publisher)
Created2013