Matching Items (3)
154306-Thumbnail Image.png
Description
Charge transport in molecular systems, including DNA (Deoxyribonucleic acid), is involved in many basic chemical and biological processes. Studying their charge transport properties can help developing DNA based electronic devices with many tunable functionalities. This thesis investigates the electric properties of double-stranded DNA, DNA G-quadruplex and dsDNA with modified base.

First,

Charge transport in molecular systems, including DNA (Deoxyribonucleic acid), is involved in many basic chemical and biological processes. Studying their charge transport properties can help developing DNA based electronic devices with many tunable functionalities. This thesis investigates the electric properties of double-stranded DNA, DNA G-quadruplex and dsDNA with modified base.

First, double-stranded DNA with alternating GC sequence and stacked GC sequence were measured with respect to length. The resistance of DNA sequences increases linearly with length, indicating a hopping transport mechanism. However, for DNA sequences with stacked GC, a periodic oscillation is superimposed on the linear length dependence, indicating a partial coherent transport. The result is supported by the finding of delocalization of the highest occupied molecular orbitals of Guanines from theoretical simulation and by fitting based on the Büttiker’s theory.

Then, a DNA G4-duplex structures with a G-quadruplex as the core and DNA duplexes as the arms were studied. Similar conductance values were observed by varying the linker positions, thus a charge splitter is developed. The conductance of the DNA G-tetrads structures was found to be sensitive to the π-stacking at the interface between the G-quadruplex and DNA duplexes by observing a higher conductance value when one duplex was removed and a polyethylene glycol (PEG) linker was added into the interface. This was further supported by molecular dynamic simulations.

Finally, a double-stranded DNA with one of the bases replaced by an anthraquinone group was studied via electrochemical STM break junction technique. Anthraquinone can be reversibly switched into the oxidized state or reduced state, to give a low conductance or high conductance respectively. Furthermore, the thermodynamics and kinetics properties of the switching were systematically studied. Theoretical simulation shows that the difference between the two states is due to a difference in the energy alignment with neighboring Guanine bases.
ContributorsXiang, Liming (Author) / Tao, Nongjian (Thesis advisor) / Lindsay, Stuart (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2016
155525-Thumbnail Image.png
Description
Studying charge transport through single molecules is of great importance for unravelling charge transport mechanisms, investigating fundamentals of chemistry, and developing functional building blocks in molecular electronics.

First, a study of the thermoelectric effect in single DNA molecules is reported. By varying the molecular length and sequence, the charge transport in

Studying charge transport through single molecules is of great importance for unravelling charge transport mechanisms, investigating fundamentals of chemistry, and developing functional building blocks in molecular electronics.

First, a study of the thermoelectric effect in single DNA molecules is reported. By varying the molecular length and sequence, the charge transport in DNA was tuned to either a hopping- or tunneling-dominated regimes. In the hopping regime, the thermoelectric effect is small and insensitive to the molecular length. Meanwhile, in the tunneling regime, the thermoelectric effect is large and sensitive to the length. These findings indicate that by varying its sequence and length, the thermoelectric effect in DNA can be controlled. The experimental results are then described in terms of hopping and tunneling charge transport models.

Then, I showed that the electron transfer reaction of a single ferrocene molecule can be controlled with a mechanical force. I monitor the redox state of the molecule from its characteristic conductance, detect the switching events of the molecule from reduced to oxidized states with the force, and determine a negative shift of ~34 mV in the redox potential under force. The theoretical modeling is in good agreement with the observations, and reveals the role of the coupling between the electronic states and structure of the molecule.

Finally, conclusions and perspectives were discussed to point out the implications of the above works and future studies that can be performed based on the findings.
ContributorsLi, Yueqi, Ph.D (Author) / Tao, Nongjian (Thesis advisor) / Buttry, Daniel (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2017
153071-Thumbnail Image.png
Description
Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically

Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically gated can be developed. This thesis demonstrates three examples of the unique electromechanical properties of single molecules.

First, the electromechanical properties of 1,4-benzenedithiol molecular junctions are investigate. Counterintuitively, the conductance of this molecule is found to increase by more than an order of magnitude when stretched. This conductance increase is found to be reversible when the molecular junction is compressed. The current-voltage, conductance-voltage and inelastic electron tunneling spectroscopy characteristics are used to attribute the conductance increase to a strain-induced shift in the frontier molecular orbital relative to the electrode Fermi level, leading to resonant enhancement in the conductance.

Next, the effect of stretching-induced structural changes on charge transport in DNA molecules is studied. The conductance of single DNA molecules with lengths varying from 6 to 26 base pairs is measured and found to follow a hopping transport mechanism. The conductance of DNA molecules is highly sensitive to mechanical stretching, showing an abrupt decrease in conductance at surprisingly short stretching distances, with weak dependence on DNA length. This abrupt conductance decrease is attributed to force-induced breaking of hydrogen bonds in the base pairs at the end of the DNA sequence.

Finally, the effect of small mechanical modulation of the base separation on DNA conductance is investigated. The sensitivity of conductance to mechanical modulation is studied for molecules of different sequence and length. Sequences with purine-purine stacking are found to be more responsive to modulation than purine-pyrimidine sequences. This sensitivity is attributed to the perturbation of &pi-&pi stacking interactions and resulting effects on the activation energy and electronic coupling for the end base pairs.
ContributorsBruot, Christopher, 1986- (Author) / Tao, Nongjian (Thesis advisor) / Lindsay, Stuart (Committee member) / Mujica, Vladimiro (Committee member) / Ferry, David (Committee member) / Arizona State University (Publisher)
Created2014