Matching Items (3)
152706-Thumbnail Image.png
Description
In the United States, there is a national agenda to increase the number of qualified science, technology, engineering, and maths (STEM) professionals and a movement to promote science literacy among the general public. This project explores the association between formal human evolutionary biology education (HEB) and high school science class

In the United States, there is a national agenda to increase the number of qualified science, technology, engineering, and maths (STEM) professionals and a movement to promote science literacy among the general public. This project explores the association between formal human evolutionary biology education (HEB) and high school science class enrollment, academic achievement, interest in a STEM degree program, motivation to pursue a STEM career, and socioscientific decision–making for a sample of students enrolled full–time at Arizona State University. Given a lack of a priori knowledge of these relationships, the Grounded Theory Method was used and was the foundation for a mixed–methods analysis involving qualitative and quantitative data from one–on–one interviews, focus groups, questionnaires, and an online survey. Theory development and hypothesis generation were based on data from 44 students. The survey instrument, developed to test the hypotheses, was completed by 486 undergraduates, age 18–22, who graduated from U.S. public high schools. The results showed that higher exposure to HEB was correlated with greater high school science class enrollment, particularly for advanced biological science classes, and that, for some students, HEB exposure may have influenced their enrollment, because the students found the content interesting and relevant. The results also suggested that students with higher K–12 HEB exposure felt more prepared for undergraduate science coursework. There was a positive correlation between HEB exposure and interest in a STEM degree and an indirect relationship between higher HEB exposure and motivation to pursue a STEM career. Regarding a number of socioscientific issues, including but not limited to climate change, homosexuality, and stem cell research, students' behaviors and decision–making more closely reflected a scientific viewpoint—or less–closely aligned to a religion–based perspective—when students had greater HEB exposure, but this was sometimes contingent on students' lifetime exposure to religious doctrine and acceptance of general evolution or human evolution. This study has implications for K–12 and higher education and justifies a paradigm shift in evolution education research, such that more emphasis is placed on students' interests, perceived preparation for continued learning, professional goals and potential contributions to society rather than just their knowledge and acceptance.
ContributorsSchrein, Caitlin M (Author) / Toon, Richard (Thesis advisor) / Johanson, Donald (Thesis advisor) / Hackett, Edward (Committee member) / Molina-Walters, Debra (Committee member) / Arizona State University (Publisher)
Created2014
153477-Thumbnail Image.png
Description
Blind and visually impaired individuals have historically demonstrated a low participation in the fields of science, engineering, mathematics, and technology (STEM). This low participation is reflected in both their education and career choices. Despite the establishment of the Americans with Disabilities Act (ADA) and the Individuals with Disabilities Education Act

Blind and visually impaired individuals have historically demonstrated a low participation in the fields of science, engineering, mathematics, and technology (STEM). This low participation is reflected in both their education and career choices. Despite the establishment of the Americans with Disabilities Act (ADA) and the Individuals with Disabilities Education Act (IDEA), blind and visually impaired (BVI) students continue to academically fall below the level of their sighted peers in the areas of science and math. Although this deficit is created by many factors, this study focuses on the lack of adequate accessible image based materials. Traditional methods for creating accessible image materials for the vision impaired have included detailed verbal descriptions accompanying an image or conversion into a simplified tactile graphic. It is very common that no substitute materials will be provided to students within STEM courses because they are image rich disciplines and often include a large number images, diagrams and charts. Additionally, images that are translated into text or simplified into basic line drawings are frequently inadequate because they rely on the interpretations of resource personnel who do not have expertise in STEM. Within this study, a method to create a new type of tactile 3D image was developed using High Density Polyethylene (HDPE) and Computer Numeric Control (CNC) milling. These tactile image boards preserve high levels of detail when compared to the original print image. To determine the discernibility and effectiveness of tactile images, these customizable boards were tested in various

university classrooms as well as in participation studies which included BVI and sighted students. Results from these studies indicate that tactile images are discernable and were found to improve performance in lab exercises as much as 60% for those with visual impairment. Incorporating tactile HDPE 3D images into a classroom setting was shown to increase the interest, participation and performance of BVI students suggesting that this type of 3D tactile image should be incorporated into STEM classes to increase the participation of these students and improve the level of training they receive in science and math.
ContributorsGonzales, Ashleigh (Author) / Baluch, Debra P (Thesis advisor) / Maienschein, Jane (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2015
156723-Thumbnail Image.png
Description
A reform movement in the United States has focused on STEM education and 21st century soft skills such as critical thinking, communication, collaboration, and creativity. This spotlight on STEM instruction provided an opportunity to explore how K-14 STEM teacher participants perceived a Design Thinking Instructional Problems (DTIP) approach to

A reform movement in the United States has focused on STEM education and 21st century soft skills such as critical thinking, communication, collaboration, and creativity. This spotlight on STEM instruction provided an opportunity to explore how K-14 STEM teacher participants perceived a Design Thinking Instructional Problems (DTIP) approach to developing instructional lessons. The study used a convergent parallel mixed-methods design with a survey instrument and a multiple case study focused on K-14 in-service STEM teachers. Data were collected from teacher participants during two five-week summer Research Experience for Teachers (RET) programs as part of two separate National Science Foundation (NSF) funded Engineering Research Centers (ERC) located at a large southwestern university in the United States (n=16). The study was conducted over three phases. During Phase I and II, teacher participants experienced a Design Thinking Overview workshop and weekly DTIP professional development sessions to facilitate the development of an RET instructional lesson. Pre- and post-program DTIP surveys and background interviews were conducted with all teacher participants (n=16). From this original group, teacher participants were selected as cases. Implementation observations and post-implementation interviews were conducted with these case-teachers (n=10). The study included frequency analysis and descriptive statistics of survey data. Qualitative data were analyzed using direct interpretation, thematic analysis, and open coding with the constant comparative method. A variety of arrays, summaries, and matrices were used to visualize patterns across and within individual case-teacher results. All 16 teacher participants viewed themselves as designers solving complex instructional problems. All 16 teacher participants found the DTIP professional development sessions to have somewhat to very much provided additional value during their RET summer programs. Six of the 10 case-teachers perceived the DTIP model graphic as mostly to completely corresponding to the way in which they developed their RET instructional lesson. Lastly, eight of the 10 case-teachers chose to embed a Design Thinking student learning strategy into the RET instructional lesson they developed.
ContributorsElwood, Kristin (Author) / Savenye, Wilhelmina (Thesis advisor) / Jordan, Michelle E (Committee member) / Henriksen, Danah (Committee member) / Mishra, Punya (Committee member) / Arizona State University (Publisher)
Created2018