Matching Items (2)
152547-Thumbnail Image.png
Description
During the past five decades neurosurgery has made great progress, with marked improvements in patient outcomes. These noticeable improvements of morbidity and mortality can be attributed to the advances in innovative technologies used in neurosurgery. Cutting-edge technologies are essential in most neurosurgical procedures, and there is no doubt that neurosurgery

During the past five decades neurosurgery has made great progress, with marked improvements in patient outcomes. These noticeable improvements of morbidity and mortality can be attributed to the advances in innovative technologies used in neurosurgery. Cutting-edge technologies are essential in most neurosurgical procedures, and there is no doubt that neurosurgery has become heavily technology dependent. With the introduction of any new modalities, surgeons must adapt, train, and become thoroughly familiar with the capabilities and the extent of application of these new innovations. Within the past decade, endoscopy has become more widely used in neurosurgery, and this newly adopted technology is being recognized as the new minimally invasive future of neurosurgery. The use of endoscopy has allowed neurosurgeons to overcome common challenges, such as limited illumination and visualization in a very narrow surgical corridor; however, it introduces other challenges, such as instrument "sword fighting" and limited maneuverability (surgical freedom). The newly introduced concept of surgical freedom is very essential in surgical planning and approach selection and can play a role in determining outcome of the procedure, since limited surgical freedom can cause fatigue or limit the extent of lesion resection. In my thesis, we develop a consistent objective methodology to quantify and evaluate surgical freedom, which has been previously evaluated subjectively, and apply this model to the analysis of various endoscopic techniques. This model is crucial for evaluating different endoscopic surgical approaches before they are applied in a clinical setting, for identifying surgical maneuvers that can improve surgical freedom, and for developing endoscopic training simulators that accurately model the surgical freedom of various approaches. Quantifying the extent of endoscopic surgical freedom will also provide developers with valuable data that will help them design improved endoscopes and endoscopic instrumentation.
ContributorsElhadi, Ali M. (Author) / Preul, Mark C (Thesis advisor) / Towe, Bruce (Thesis advisor) / Little, Andrew S. (Committee member) / Nakaji, Peter (Committee member) / Vu, Eric T (Committee member) / Arizona State University (Publisher)
Created2014
168323-Thumbnail Image.png
Description
Transorbital surgery has gained recent notoriety due to its incorporation into endoscopic skull base surgery. The body of published literature on the field is cadaveric and observation. The pre-clinical studies are focused on the use of the endoscope only. Furthermore the methodology utilised in the published literature is inconsistent and

Transorbital surgery has gained recent notoriety due to its incorporation into endoscopic skull base surgery. The body of published literature on the field is cadaveric and observation. The pre-clinical studies are focused on the use of the endoscope only. Furthermore the methodology utilised in the published literature is inconsistent and does not embody the optimal principles of scientific experimentation. This body of work evaluates a minimally invasive novel surgical corridor - the transorbital approach - its validity in neurosurgical practice, as well as both qualitatively and quantitatively assessing available technological advances in a robust experimental fashion. While the endoscope is an established means of visualisation used in clinical transorbital surgery, the microscope has never been assessed with respect to the transorbital approach. This question is investigated here and the anatomical and surgical benefits and limitations of microscopic visualisation demonstrated. The comparative studies provide increased knowledge on specifics pertinent to neurosurgeons and other skull base specialists when planning pre-operatively, such as pathology location, involved anatomical structures, instrument maneuvrability and the advantages and disadvantages of the distinct visualisation technologies. This is all with the intention of selecting the most suitable surgical approach and technology, specific to the patient, pathology and anatomy, so as to perform the best surgical procedure. The research findings illustrated in this body of work are diverse, reproducible and applicable. The transorbital surgical corridor has substantive potential for access to the anterior cranial fossa and specific surgical target structures. The neuroquantitative metrics investigated confirm the utility and benefits specific to the respective visualisation technologies i.e. the endoscope and microscope. The most appropriate setting wherein the approach should be used is also discussed. The transorbital corridor has impressive potential, can utilise all available technological advances, promotes multi-disciplinary co-operation and learning amongst clinicians and ultimately, is a means of improving operative patient care.
ContributorsHoulihan, Lena Mary (Author) / Preul, Mark C. (Thesis advisor) / Vernon, Brent (Thesis advisor) / O' Sullivan, Michael G.J. (Committee member) / Lawton, Michael T. (Committee member) / Santarelli, Griffin (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2021