Matching Items (3)

Filtering by

Clear all filters

152671-Thumbnail Image.png

Structural characterization and optical properties of Group IV semiconductor alloys

Description

ABSTRACT This thesis focuses on structural characterizations and optical properties of Si, Ge based semiconductor alloys. Two material systems are characterized: Si-based III-V/IV alloys, which represent a possible pathway to augment the optical performance of elemental silicon as a solar

ABSTRACT This thesis focuses on structural characterizations and optical properties of Si, Ge based semiconductor alloys. Two material systems are characterized: Si-based III-V/IV alloys, which represent a possible pathway to augment the optical performance of elemental silicon as a solar cell absorber layer, and Ge-based Ge1-ySny and Ge1-x-ySixSny systems which are applicable to long wavelength optoelectronics. Electron microscopy is the primary tool used to study structural properties. Electron Energy Loss spectroscopy (EELS), Ellipsometry, Photoluminescence and Raman Spectroscopy are combined to investigate electronic band structures and bonding properties. The experiments are closely coupled with structural and property modeling and theory. A series of III-V-IV alloys have been synthesized by the reaction of M(SiH3)3 (M = P, As) with Al atoms from a Knudsen cell. In the AlPSi3 system, bonding configurations and elemental distributions are characterized by scanning transmission electron microscopy (STEM)/EELS and correlated with bulk optical behavior. The incorporation of N was achieved by addition of N(SiH3)3 into the reaction mixture yielding [Al(As1-xNx)]ySi5-2yalloys. A critical point analysis of spectroscopic ellipsometry data reveals the existence of direct optical transitions at energies as low as 2.5 eV, well below the lowest direct absorption edge of Si at 3.3 eV. The compositional dependence of the lowest direct gap and indirect gap in Ge1-ySny alloys extracted from room temperature photoluminescence indicates a crossover concentration of yc =0.073, much lower than virtual crystal approximation but agrees well with large atomic supercells predictions. A series of Ge-rich Ge1-x-ySixSny samples with a fixed 3-4% Si content and progressively increasing Sn content in the 4-10% range are grown and characterized by electron microscopy and photoluminescence. The ternary represents an attractive alternative to Ge1-ySny for applications in IR optoelectronic technologies.

Contributors

Agent

Created

Date Created
2014

154156-Thumbnail Image.png

The optical and electronic properties of Ge₁-ySny and Ge₁-x-ySixSny materials and devices for silicon integrated optoelectronics

Description

Group-IV semiconductor alloys are of interest for Si-integrated optoelectronic applications due to the band gap tunability and enhanced optical capabilities that can be achieved through compositional tuning. This work advances the field by presenting a systematic study of the optical

Group-IV semiconductor alloys are of interest for Si-integrated optoelectronic applications due to the band gap tunability and enhanced optical capabilities that can be achieved through compositional tuning. This work advances the field by presenting a systematic study of the optical and electronic properties of Ge1-ySny and analogous Ge1-x-ySixSny alloys.

The fundamental direct and indirect band gaps of Ge1-ySny materials are measured by room temperature photoluminescence in samples containing 0 ≤ y ≤ 0.11 and a transition to direct gap materials is found to occur at yc = 0.087. This result is enabled by the development of sample growth and processing protocols that produce high-quality materials epitaxially on Ge-buffered Si(100) substrates. Strategies to optimize the optical performance are explored by varying the film thickness, thermal and surface treatments, and n-type doping. The electrical and optical properties of diodes based on these materials are characterized by current-voltage, optical responsivity, and electroluminescence measurements. These show improved optical performance near yc with tunable emission out to 2500 nm. Measuring the carrier lifetimes in devices with strain relaxed and fully strained interfaces show significantly longer lifetimes in the fully strained case.

The direct and indirect band gaps of Sn-rich (y > x) Ge1-x-ySixSny materials are measured by room temperature photoluminescence on optimized samples. These data confirm a transition to direct gap materials occurs for the ternary alloy as well. Devices based on compositions 0.02 ≤ x ≤ 0.10 and 0.03 ≤ y ≤ 0.11 are characterized by current-voltage, optical responsivity, and electroluminescence measurements and show competitive performance with analogous devices based on Ge1-ySny materials. A detailed study of the direct gap in Ge1-xSix alloys gives parameters crucial en route to a global description of the Ge1-x-ySixSny fundamental band gaps.

Archetypal laser device designs on Si are explored by fabricating degenerate pn junction diodes and highly doped waveguide devices based on high-quality Ge1-ySny materials. The diodes showed tunnel-like current-voltage characteristics and tailored electroluminescence based on the doping profile. The waveguides demonstrate emission under optical stimulation.

Contributors

Agent

Created

Date Created
2015

156931-Thumbnail Image.png

Evaluation of k4-diimine nickel and cobalt hydrofunctionalization catalysts

Description

The search for highly active, inexpensive, and earth abundant replacements for existing transition metal catalysts is ongoing. Our group has utilized several redox non-innocent ligands that feature flexible arms with donor substituents. These ligands allow for coordinative flexibility about the

The search for highly active, inexpensive, and earth abundant replacements for existing transition metal catalysts is ongoing. Our group has utilized several redox non-innocent ligands that feature flexible arms with donor substituents. These ligands allow for coordinative flexibility about the metal centre, while the redox non-innocent core helps to overcome the one electron chemistry that is prevalent in first row transition metals. This dissertation focuses on the use of Ph2PPrDI, which can adopt a κ4-configuration when bound to a metal. One reaction that is industrially useful is hydrosilylation, which allows for the preparation of silicones that are useful in the lubrication, adhesive, and cosmetics industries. Typically, this reaction relies on highly active, platinum-based catalysts. However, the high cost of this metal has inspired the search for base metal replacements. In Chapter One, an overview of existing alkene and carbonyl hydrosilylation catalysts is presented. Chapter Two focuses on exploring the reactivity of (Ph2PPrDI)Ni towards carbonyl hydrosilylation, as well as the development of the 2nd generation catalysts, (iPr2PPrDI)Ni and (tBu2PPrDI)Ni. Chapter Three presents a new C-O bond hydrosilylation reaction for the formation of silyl esters. It was found the (Ph2PPrDI)Ni is the most active catalyst in the literature for this transformation, with turnover frequencies of up to 900 h-1. Chapter Four explores the activity and selectivity of (Ph2PPrDI)Ni for alkene hydrosilylation, including the first large scope of gem-olefins for a nickel-based catalyst. Chapter Five explores the chemistry of (Ph2PPrDI)CoH, first through electronic structure determinations and crystallography, followed by an investigation of its reactivity towards alkyne hydroboration and nitrile dihydroboration. (Ph2PPrDI)CoH is the first reported cobalt nitrile dihydroboration catalyst.

Contributors

Agent

Created

Date Created
2018