Matching Items (2)
152427-Thumbnail Image.png
Description
Consideration of both biological and human-use dynamics in coupled social-ecological systems is essential for the success of interventions such as marine reserves. As purely human institutions, marine reserves have no direct effects on ecological systems. Consequently, the success of a marine reserve depends on managers` ability to alter human behavior

Consideration of both biological and human-use dynamics in coupled social-ecological systems is essential for the success of interventions such as marine reserves. As purely human institutions, marine reserves have no direct effects on ecological systems. Consequently, the success of a marine reserve depends on managers` ability to alter human behavior in the direction and magnitude that supports reserve objectives. Further, a marine reserve is just one component in a larger coupled social-ecological system. The social, economic, political, and biological landscape all determine the social acceptability of a reserve, conflicts that arise, how the reserve interacts with existing fisheries management, accuracy of reserve monitoring, and whether the reserve is ultimately able to meet conservation and fishery enhancement goals. Just as the social-ecological landscape is critical at all stages for marine reserve, from initial establishment to maintenance, the reserve in turn interacts with biological and human use dynamics beyond its borders. Those interactions can lead to the failure of a reserve to meet management goals, or compromise management goals outside the reserve. I use a bio-economic model of a fishery in a spatially patchy environment to demonstrate how the pre-reserve fisheries management strategy determines the pattern of fishing effort displacement once the reserve is established, and discuss the social, political, and biological consequences of different patterns for the reserve and the fishery. Using a stochastic bio-economic model, I demonstrate how biological and human use connectivity can confound the accurate detection of reserve effects by violating assumptions in the quasi-experimental framework. Finally, I examine data on recreational fishing site selection to investigate changes in response to the announcement of enforcement of a marine reserve in the Gulf of California, Mexico. I generate a scale of fines that would fully or partially protect the reserve, providing a data-driven way for managers to balance biological and socio-economic goals. I suggest that natural resource managers consider human use dynamics with the same frequency, rigor, and tools as they do biological stocks.
ContributorsFujitani, Marie (Author) / Abbott, Joshua (Thesis advisor) / Fenichel, Eli (Thesis advisor) / Gerber, Leah (Committee member) / Anderies, John (Committee member) / Arizona State University (Publisher)
Created2014
156899-Thumbnail Image.png
Description
Science is a formalized method for acquiring information about the world. In

recent years, the ability of science to do so has been scrutinized. Attempts to reproduce

findings in diverse fields demonstrate that many results are unreliable and do not

generalize across contexts. In response to these concerns, many proposals for reform have

emerged.

Science is a formalized method for acquiring information about the world. In

recent years, the ability of science to do so has been scrutinized. Attempts to reproduce

findings in diverse fields demonstrate that many results are unreliable and do not

generalize across contexts. In response to these concerns, many proposals for reform have

emerged. Although promising, such reforms have not addressed all aspects of scientific

practice. In the social sciences, two such aspects are the diversity of study participants

and incentive structures. Most efforts to improve scientific practice focus on replicability,

but sidestep issues of generalizability. And while researchers have speculated about the

effects of incentive structures, there is little systematic study of these hypotheses. This

dissertation takes one step towards filling these gaps. Chapter 1 presents a cross-cultural

study of social discounting – the purportedly fundamental human tendency to sacrifice

more for socially-close individuals – conducted among three diverse populations (U.S.,

rural Indonesia, rural Bangladesh). This study finds no independent effect of social

distance on generosity among Indonesian and Bangladeshi participants, providing

evidence against the hypothesis that social discounting is universal. It also illustrates the

importance of studying diverse human populations for developing generalizable theories

of human nature. Chapter 2 presents a laboratory experiment with undergraduates to test

the effect of incentive structures on research accuracy, in an instantiation of the scientific

process where the key decision is how much data to collect before submitting one’s

findings. The results demonstrate that rewarding novel findings causes respondents to

make guesses with less information, thereby reducing their accuracy. Chapter 3 presents

an evolutionary agent-based model that tests the effect of competition for novel findings

on the sample size of studies that researchers conduct. This model demonstrates that

competition for novelty causes the cultural evolution of research with smaller sample

sizes and lower statistical power. However, increasing the startup costs to conducting

single studies can reduce the negative effects of competition, as can rewarding

publication of secondary findings. These combined chapters provide evidence that

aspects of current scientific practice may be detrimental to the reliability and

generalizability of research and point to potential solutions.
ContributorsTiokhin, Leonid (Author) / Hruschka, Daniel J (Thesis advisor) / Morgan, Thomas JH (Thesis advisor) / Boyd, Robert (Committee member) / Frankenhuis, Willem E. (Committee member) / Bergstrom, Carl T. (Committee member) / Arizona State University (Publisher)
Created2018