Matching Items (2)
152387-Thumbnail Image.png
Description
Land-atmosphere interactions of semiarid shrublands have garnered significant scientific interest. One of the main tools used for this research is the eddy covariance (EC) method, which measures fluxes of energy, water vapor, and carbon dioxide. EC fluxes can be difficult to interpret due to complexities within the EC footprint (i.e.

Land-atmosphere interactions of semiarid shrublands have garnered significant scientific interest. One of the main tools used for this research is the eddy covariance (EC) method, which measures fluxes of energy, water vapor, and carbon dioxide. EC fluxes can be difficult to interpret due to complexities within the EC footprint (i.e. the surface conditions that contribute to the flux measurements). Most EC studies use a small number of soil probes to estimate the land surface states underlying the measured fluxes, which likely undersamples the footprint-scale conditions, especially in semiarid shrublands which are characterized by high spatial and temporal variability. In this study, I installed a dense network of soil moisture and temperature probe profiles in the footprint region of an EC tower at two semiarid sites: a woody savanna in southern Arizona and a mixed shrubland in southern New Mexico. For data from May to September 2013, I link land surface states to EC fluxes through daily footprints estimated using an analytical model. Novel approaches are utilized to partition evapotranspiration, estimate EC footprint soil states, connect differences in fluxes to footprint composition, and assess key drivers behind soil state variability. I verify the hypothesis that a small number of soil probes poorly estimates the footprint conditions for soil moisture, due to its high spatial variability. Soil temperature, however, behaves more consistently in time and space. As such, distributed surface measurements within the EC footprint allow for stronger ties between evapotranspiration and moisture, but demonstrate no significant improvement in connecting sensible heat flux and temperature. I also find that in these systems vegetation cover appears to have stronger controls on soil moisture and temperature than does soil texture. Further, I explore the influence of footprint vegetation composition on the measured fluxes, which reveals that during the monsoon season evaporative fraction tends to increase with footprint bare soil coverage for the New Mexico site and that the ratio of daily transpiration to evapotranspiration increases with grass coverage at the Arizona site. The thesis results are useful for understanding the land-atmosphere interactions of these ecosystems and for guiding future EC studies in heterogeneous landscapes.
ContributorsAnderson, Cody Alan (Author) / Vivoni, Enrique R (Thesis advisor) / Wang, Zhihua (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2013
154963-Thumbnail Image.png
Description
Land surface fluxes of energy and mass developed over heterogeneous mountain landscapes are fundamental to atmospheric processes. However, due to their high complexity and the lack of spatial observations, land surface processes and land-atmosphere interactions are not fully understood in mountain regions. This thesis investigates land surface processes and their

Land surface fluxes of energy and mass developed over heterogeneous mountain landscapes are fundamental to atmospheric processes. However, due to their high complexity and the lack of spatial observations, land surface processes and land-atmosphere interactions are not fully understood in mountain regions. This thesis investigates land surface processes and their impact on convective precipitation by conducting numerical modeling experiments at multiple scales over the North American Monsoon (NAM) region. Specifically, the following scientific questions are addressed: (1) how do land surface conditions evolve during the monsoon season, and what are their main controls?, (2) how do the diurnal cycles of surface energy fluxes vary during the monsoon season for the major ecosystems?, and (3) what are the impacts of surface soil moisture and vegetation condition on convective precipitation?

Hydrologic simulation using the TIN-based Real-time Integrated Basin Simulator (tRIBS) is firstly carried out to examine the seasonal evolution of land surface conditions. Results reveal that the spatial heterogeneity of land surface temperature and soil moisture increases dramatically with the onset of monsoon, which is related to seasonal changes in topographic and vegetation controls. Similar results are found at regional basin scale using the uncoupled WRF-Hydro model. Meanwhile, the diurnal cycles of surface energy fluxes show large variation between the major ecosystems. Differences in both the peak magnitude and peak timing of plant transpiration induce mesoscale heterogeneity in land surface conditions. Lastly, this dissertation examines the upscale effect of land surface heterogeneity on atmospheric condition through fully-coupled WRF-Hydro simulations. A series of process-based experiments were conducted to identify the pathways of soil moisture-rainfall feedback mechanism over the NAM region. While modeling experiments confirm the existence of positive soil moisture/vegetation-rainfall feedback, their exact pathways are slightly different. Interactions between soil moisture, vegetation cover, and rainfall through a series of land surface and atmospheric boundary layer processes highlight the strong land-atmosphere coupling in the NAM region, and have important implications on convective rainfall prediction. Overall, this dissertation advances the study of complex land surface processes over the NAM region, and made important contributions in linking complex hydrologic, ecologic and atmospheric processes through numerical modeling.
ContributorsXiang, Tiantian (Author) / Vivoni, Enrique R (Thesis advisor) / Gochis, David J (Committee member) / Huang, Huei-Ping (Committee member) / Mascaro, Giuseppe (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2016