Matching Items (2)
Filtering by

Clear all filters

154488-Thumbnail Image.png
Description
This dissertation investigates the dynamics of evolutionary games based on the framework of interacting particle systems in which individuals are discrete, space is explicit, and dynamics are stochastic. Its focus is on 2-strategy games played on a d-dimensional integer lattice with a range of interaction M. An overview of

This dissertation investigates the dynamics of evolutionary games based on the framework of interacting particle systems in which individuals are discrete, space is explicit, and dynamics are stochastic. Its focus is on 2-strategy games played on a d-dimensional integer lattice with a range of interaction M. An overview of related past work is given along with a summary of the dynamics in the mean-field model, which is described by the replicator equation. Then the dynamics of the interacting particle system is considered, first when individuals are updated according to the best-response update process and then the death-birth update process. Several interesting results are derived, and the differences between the interacting particle system model and the replicator dynamics are emphasized. The terms selfish and altruistic are defined according to a certain ordering of payoff parameters. In these terms, the replicator dynamics are simple: coexistence occurs if both strategies are altruistic; the selfish strategy wins if one strategy is selfish and the other is altruistic; and there is bistability if both strategies are selfish. Under the best-response update process, it is shown that there is no bistability region. Instead, in the presence of at least one selfish strategy, the most selfish strategy wins, while there is still coexistence if both strategies are altruistic. Under the death-birth update process, it is shown that regardless of the range of interactions and the dimension, regions of coexistence and bistability are both reduced. Additionally, coexistence occurs in some parameter region for large enough interaction ranges. Finally, in contrast with the replicator equation and the best-response update process, cooperators can win in the prisoner's dilemma for the death-birth process in one-dimensional nearest-neighbor interactions.
ContributorsEvilsizor, Stephen (Author) / Lanchier, Nicolas (Thesis advisor) / Kang, Yun (Committee member) / Motsch, Sebastien (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2016
155408-Thumbnail Image.png
Description
Using a simple $SI$ infection model, I uncover the

overall dynamics of the system and how they depend on the incidence

function. I consider both an epidemic and endemic perspective of the

model, but in both cases, three classes of incidence

functions are identified.

In the epidemic form,

power incidences, where the infective portion $I^p$

Using a simple $SI$ infection model, I uncover the

overall dynamics of the system and how they depend on the incidence

function. I consider both an epidemic and endemic perspective of the

model, but in both cases, three classes of incidence

functions are identified.

In the epidemic form,

power incidences, where the infective portion $I^p$ has $p\in(0,1)$,

cause unconditional host extinction,

homogeneous incidences have host extinction for certain parameter constellations and

host survival for others, and upper density-dependent incidences

never cause host extinction. The case of non-extinction in upper

density-dependent

incidences extends to the case where a latent period is included.

Using data from experiments with rhanavirus and salamanders,

maximum likelihood estimates are applied to the data.

With these estimates,

I generate the corrected Akaike information criteria, which

reward a low likelihood and punish the use of more parameters.

This generates the Akaike weight, which is used to fit

parameters to the data, and determine which incidence functions

fit the data the best.

From an endemic perspective, I observe

that power incidences cause initial condition dependent host extinction for

some parameter constellations and global stability for others,

homogeneous incidences have host extinction for certain parameter constellations and

host survival for others, and upper density-dependent incidences

never cause host extinction.

The dynamics when the incidence function is homogeneous are deeply explored.

I expand the endemic considerations in the homogeneous case

by adding a predator into the model.

Using persistence theory, I show the conditions for the persistence of each of the

predator, prey, and parasite species. Potential dynamics of the system include parasite mediated

persistence of the predator, survival of the ecosystem at high initial predator levels and

ecosystem collapse at low initial predator levels, persistence of all three species, and much more.
ContributorsFarrell, Alexander E. (Author) / Thieme, Horst R (Thesis advisor) / Smith, Hal (Committee member) / Kuang, Yang (Committee member) / Tang, Wenbo (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2017