Matching Items (3)
Filtering by

Clear all filters

157065-Thumbnail Image.png
Description
The detection and segmentation of objects appearing in a natural scene, often referred to as Object Detection, has gained a lot of interest in the computer vision field. Although most existing object detectors aim to detect all the objects in a given scene, it is important to evaluate whether these

The detection and segmentation of objects appearing in a natural scene, often referred to as Object Detection, has gained a lot of interest in the computer vision field. Although most existing object detectors aim to detect all the objects in a given scene, it is important to evaluate whether these methods are capable of detecting the salient objects in the scene when constraining the number of proposals that can be generated due to constraints on timing or computations during execution. Salient objects are objects that tend to be more fixated by human subjects. The detection of salient objects is important in applications such as image collection browsing, image display on small devices, and perceptual compression.

This thesis proposes a novel evaluation framework that analyses the performance of popular existing object proposal generators in detecting the most salient objects. This work also shows that, by incorporating saliency constraints, the number of generated object proposals and thus the computational cost can be decreased significantly for a target true positive detection rate (TPR).

As part of the proposed framework, salient ground-truth masks are generated from the given original ground-truth masks for a given dataset. Given an object detection dataset, this work constructs salient object location ground-truth data, referred to here as salient ground-truth data for short, that only denotes the locations of salient objects. This is obtained by first computing a saliency map for the input image and then using it to assign a saliency score to each object in the image. Objects whose saliency scores are sufficiently high are referred to as salient objects. The detection rates are analyzed for existing object proposal generators with respect to the original ground-truth masks and the generated salient ground-truth masks.

As part of this work, a salient object detection database with salient ground-truth masks was constructed from the PASCAL VOC 2007 dataset. Not only does this dataset aid in analyzing the performance of existing object detectors for salient object detection, but it also helps in the development of new object detection methods and evaluating their performance in terms of successful detection of salient objects.
ContributorsKotamraju, Sai Prajwal (Author) / Karam, Lina J (Thesis advisor) / Yu, Hongbin (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2019
153573-Thumbnail Image.png
Description
Skin electronics is one of the most promising applications of stretchable electronics. The versatility of skin electronics can only be guaranteed when it has conformal contact with human skin. While both analytical and numerical solutions for contact between serpentine interconnects and soft substrate remain unreported, the motivation of this thesis

Skin electronics is one of the most promising applications of stretchable electronics. The versatility of skin electronics can only be guaranteed when it has conformal contact with human skin. While both analytical and numerical solutions for contact between serpentine interconnects and soft substrate remain unreported, the motivation of this thesis is to render a novel method to numerically study the conformability of the serpentine interconnects. This thesis explained thoroughly how to conduct finite element analysis for the conformability of skin electronics, including modeling, meshing method and step setup etc.. User-defined elements were implemented to the finite element commercial package ABAQUS for the analysis of conformability. With thorough investigation into the conformability of Fermat’s spiral, it has been found that the kirigami based pattern exhibits high conformability. Since thickness is a key factor to design skin electronics, the thesis also talked about how the change of thickness of the skin electronics impacts on the conformability.
ContributorsFan, Yiling (Author) / Jiang, Hanqing (Thesis advisor) / Hildreth, Owen (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2015
158675-Thumbnail Image.png
Description
Flexible conducting materials have been in the forefront of a rapidly transforming electronics industry, focusing on wearable devices for a variety of applications in recent times. Over the past few decades, bulky, rigid devices have been replaced with a surging demand for thin, flexible, light weight, ultra-portable yet high performance

Flexible conducting materials have been in the forefront of a rapidly transforming electronics industry, focusing on wearable devices for a variety of applications in recent times. Over the past few decades, bulky, rigid devices have been replaced with a surging demand for thin, flexible, light weight, ultra-portable yet high performance electronics. The interconnects available in the market today only satisfy a few of the desirable characteristics, making it necessary to compromise one feature over another. In this thesis, a method to prepare a thin, flexible, and stretchable inter-connect is presented with improved conductivity compared to previous achievements. It satisfies most mechanical and electrical conditions desired in the wearable electronics industry. The conducting composite, prepared with the widely available, low cost silicon-based organic polymer - polydimethylsiloxane (PDMS) and silver (Ag), is sandwiched between two cured PDMS layers. These protective layers improve the mechanical stability of the inter-connect. The structure can be stretched up to 120% of its original length which can further be enhanced to over 250% by cutting it into a serpentine shape without compromising its electrical stability. The inter-connect, around 500 µm thick, can be integrated into thin electronic packaging. The synthesis process of the composite material, along with its electrical and mechanical and properties are presented in detail. Testing methods and results for mechanical and electrical stability are also illustrated over extensive flexing and stretching cycles. The materials put into test, along with conductive silver (Ag) - polydimethylsiloxane (PDMS) composite in a sandwich structure, are copper foils, copper coated polyimide (PI) and aluminum (Al) coated polyethylene terephthalate (PET).
ContributorsNandy, Mayukh (Author) / Yu, Hongbin (Thesis advisor) / Chan, Candace (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2020