Matching Items (9)
Filtering by

Clear all filters

153904-Thumbnail Image.png
Description
Recent advances in hierarchical or multilevel statistical models and causal inference using the potential outcomes framework hold tremendous promise for mock and real jury research. These advances enable researchers to explore how individual jurors can exert a bottom-up effect on the jury’s verdict and how case-level features can exert a

Recent advances in hierarchical or multilevel statistical models and causal inference using the potential outcomes framework hold tremendous promise for mock and real jury research. These advances enable researchers to explore how individual jurors can exert a bottom-up effect on the jury’s verdict and how case-level features can exert a top-down effect on a juror’s perception of the parties at trial. This dissertation explains and then applies these technical advances to a pre-existing mock jury dataset to provide worked examples in an effort to spur the adoption of these techniques. In particular, the paper introduces two new cross-level mediated effects and then describes how to conduct ecological validity tests with these mediated effects. The first cross-level mediated effect, the a1b1 mediated effect, is the juror level mediated effect for a jury level manipulation. The second cross-level mediated effect, the a2bc mediated effect, is the unique contextual effect that being in a jury has on the individual the juror. When a mock jury study includes a deliberation versus non-deliberation manipulation, the a1b1 can be compared for the two conditions, enabling a general test of ecological validity. If deliberating in a group generally influences the individual, then the two indirect effects should be significantly different. The a2bc can also be interpreted as a specific test of how much changes in jury level means of this specific mediator effect juror level decision-making.
ContributorsLovis-McMahon, David (Author) / Schweitzer, Nicholas (Thesis advisor) / Saks, Michael (Thesis advisor) / Salerno, Jessica (Committee member) / MacKinnon, David (Committee member) / Arizona State University (Publisher)
Created2015
156631-Thumbnail Image.png
Description
Mediation analysis is used to investigate how an independent variable, X, is related to an outcome variable, Y, through a mediator variable, M (MacKinnon, 2008). If X represents a randomized intervention it is difficult to make a cause and effect inference regarding indirect effects without making no unmeasured confounding assumptions

Mediation analysis is used to investigate how an independent variable, X, is related to an outcome variable, Y, through a mediator variable, M (MacKinnon, 2008). If X represents a randomized intervention it is difficult to make a cause and effect inference regarding indirect effects without making no unmeasured confounding assumptions using the potential outcomes framework (Holland, 1988; MacKinnon, 2008; Robins & Greenland, 1992; VanderWeele, 2015), using longitudinal data to determine the temporal order of M and Y (MacKinnon, 2008), or both. The goals of this dissertation were to (1) define all indirect and direct effects in a three-wave longitudinal mediation model using the causal mediation formula (Pearl, 2012), (2) analytically compare traditional estimators (ANCOVA, difference score, and residualized change score) to the potential outcomes-defined indirect effects, and (3) use a Monte Carlo simulation to compare the performance of regression and potential outcomes-based methods for estimating longitudinal indirect effects and apply the methods to an empirical dataset. The results of the causal mediation formula revealed the potential outcomes definitions of indirect effects are equivalent to the product of coefficient estimators in a three-wave longitudinal mediation model with linear and additive relations. It was demonstrated with analytical comparisons that the ANCOVA, difference score, and residualized change score models’ estimates of two time-specific indirect effects differ as a function of the respective mediator-outcome relations at each time point. The traditional model that performed the best in terms of the evaluation criteria in the Monte Carlo study was the ANCOVA model and the potential outcomes model that performed the best in terms of the evaluation criteria was sequential G-estimation. Implications and future directions are discussed.
ContributorsValente, Matthew J (Author) / Mackinnon, David P (Thesis advisor) / West, Stephen G. (Committee member) / Grimm, Keving (Committee member) / Chassin, Laurie (Committee member) / Arizona State University (Publisher)
Created2018
152217-Thumbnail Image.png
Description
In investigating mediating processes, researchers usually use randomized experiments and linear regression or structural equation modeling to determine if the treatment affects the hypothesized mediator and if the mediator affects the targeted outcome. However, randomizing the treatment will not yield accurate causal path estimates unless certain assumptions are satisfied. Since

In investigating mediating processes, researchers usually use randomized experiments and linear regression or structural equation modeling to determine if the treatment affects the hypothesized mediator and if the mediator affects the targeted outcome. However, randomizing the treatment will not yield accurate causal path estimates unless certain assumptions are satisfied. Since randomization of the mediator may not be plausible for most studies (i.e., the mediator status is not randomly assigned, but self-selected by participants), both the direct and indirect effects may be biased by confounding variables. The purpose of this dissertation is (1) to investigate the extent to which traditional mediation methods are affected by confounding variables and (2) to assess the statistical performance of several modern methods to address confounding variable effects in mediation analysis. This dissertation first reviewed the theoretical foundations of causal inference in statistical mediation analysis, modern statistical analysis for causal inference, and then described different methods to estimate causal direct and indirect effects in the presence of two post-treatment confounders. A large simulation study was designed to evaluate the extent to which ordinary regression and modern causal inference methods are able to obtain correct estimates of the direct and indirect effects when confounding variables that are present in the population are not included in the analysis. Five methods were compared in terms of bias, relative bias, mean square error, statistical power, Type I error rates, and confidence interval coverage to test how robust the methods are to the violation of the no unmeasured confounders assumption and confounder effect sizes. The methods explored were linear regression with adjustment, inverse propensity weighting, inverse propensity weighting with truncated weights, sequential g-estimation, and a doubly robust sequential g-estimation. Results showed that in estimating the direct and indirect effects, in general, sequential g-estimation performed the best in terms of bias, Type I error rates, power, and coverage across different confounder effect, direct effect, and sample sizes when all confounders were included in the estimation. When one of the two confounders were omitted from the estimation process, in general, none of the methods had acceptable relative bias in the simulation study. Omitting one of the confounders from estimation corresponded to the common case in mediation studies where no measure of a confounder is available but a confounder may affect the analysis. Failing to measure potential post-treatment confounder variables in a mediation model leads to biased estimates regardless of the analysis method used and emphasizes the importance of sensitivity analysis for causal mediation analysis.
ContributorsKisbu Sakarya, Yasemin (Author) / Mackinnon, David Peter (Thesis advisor) / Aiken, Leona (Committee member) / West, Stephen (Committee member) / Millsap, Roger (Committee member) / Arizona State University (Publisher)
Created2013
187808-Thumbnail Image.png
Description
This dissertation covers several topics in machine learning and causal inference. First, the question of “feature selection,” a common byproduct of regularized machine learning methods, is investigated theoretically in the context of treatment effect estimation. This involves a detailed review and extension of frameworks for estimating causal effects and in-depth

This dissertation covers several topics in machine learning and causal inference. First, the question of “feature selection,” a common byproduct of regularized machine learning methods, is investigated theoretically in the context of treatment effect estimation. This involves a detailed review and extension of frameworks for estimating causal effects and in-depth theoretical study. Next, various computational approaches to estimating causal effects with machine learning methods are compared with these theoretical desiderata in mind. Several improvements to current methods for causal machine learning are identified and compelling angles for further study are pinpointed. Finally, a common method used for “explaining” predictions of machine learning algorithms, SHAP, is evaluated critically through a statistical lens.
ContributorsHerren, Andrew (Author) / Hahn, P Richard (Thesis advisor) / Kao, Ming-Hung (Committee member) / Lopes, Hedibert (Committee member) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Arizona State University (Publisher)
Created2023
187395-Thumbnail Image.png
Description
This dissertation develops versatile modeling tools to estimate causal effects when conditional unconfoundedness is not immediately satisfied. Chapter 2 provides a brief overview ofcommon techniques in causal inference, with a focus on models relevant to the data explored in later chapters. The rest of the dissertation focuses on the development of

This dissertation develops versatile modeling tools to estimate causal effects when conditional unconfoundedness is not immediately satisfied. Chapter 2 provides a brief overview ofcommon techniques in causal inference, with a focus on models relevant to the data explored in later chapters. The rest of the dissertation focuses on the development of novel “reduced form” models which are designed to assess the particular challenges of different datasets. Chapter 3 explores the question of whether or not forecasts of bankruptcy cause bankruptcy. The question arises from the observation that companies issued going concern opinions were more likely to go bankrupt in the following year, leading people to speculate that the opinions themselves caused the bankruptcy via a “self-fulfilling prophecy”. A Bayesian machine learning sensitivity analysis is developed to answer this question. In exchange for additional flexibility and fewer assumptions, this approach loses point identification of causal effects and thus a sensitivity analysis is developed to study a wide range of plausible scenarios of the causal effect of going concern opinions on bankruptcy. Reported in the simulations are different performance metrics of the model in comparison with other popular methods and a robust analysis of the sensitivity of the model to mis-specification. Results on empirical data indicate that forecasts of bankruptcies likely do have a small causal effect. Chapter 4 studies the effects of vaccination on COVID-19 mortality at the state level in the United States. The dynamic nature of the pandemic complicates more straightforward regression adjustments and invalidates many alternative models. The chapter comments on the limitations of mechanistic approaches as well as traditional statistical methods to epidemiological data. Instead, a state space model is developed that allows the study of the ever-changing dynamics of the pandemic’s progression. In the first stage, the model decomposes the observed mortality data into component surges, and later uses this information in a semi-parametric regression model for causal analysis. Results are investigated thoroughly for empirical justification and stress-tested in simulated settings.
ContributorsPapakostas, Demetrios (Author) / Hahn, Paul (Thesis advisor) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Kao, Ming-Hung (Committee member) / Lan, Shiwei (Committee member) / Arizona State University (Publisher)
Created2023
191496-Thumbnail Image.png
Description
This dissertation centers on Bayesian Additive Regression Trees (BART) and Accelerated BART (XBART) and presents a series of models that tackle extrapolation, classification, and causal inference challenges. To improve extrapolation in tree-based models, I propose a method called local Gaussian Process (GP) that combines Gaussian process regression with trained BART

This dissertation centers on Bayesian Additive Regression Trees (BART) and Accelerated BART (XBART) and presents a series of models that tackle extrapolation, classification, and causal inference challenges. To improve extrapolation in tree-based models, I propose a method called local Gaussian Process (GP) that combines Gaussian process regression with trained BART trees. This allows for extrapolation based on the most relevant data points and covariate variables determined by the trees' structure. The local GP technique is extended to the Bayesian causal forest (BCF) models to address the positivity violation issue in causal inference. Additionally, I introduce the LongBet model to estimate time-varying, heterogeneous treatment effects in panel data. Furthermore, I present a Poisson-based model, with a modified likelihood for XBART for the multi-class classification problem.
ContributorsWang, Meijia (Author) / Hahn, Paul (Thesis advisor) / He, Jingyu (Committee member) / Lan, Shiwei (Committee member) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Arizona State University (Publisher)
Created2024
157542-Thumbnail Image.png
Description
Statistical inference from mediation analysis applies to populations, however, researchers and clinicians may be interested in making inference to individual clients or small, localized groups of people. Person-oriented approaches focus on the differences between people, or latent groups of people, to ask how individuals differ across variables, and can hel

Statistical inference from mediation analysis applies to populations, however, researchers and clinicians may be interested in making inference to individual clients or small, localized groups of people. Person-oriented approaches focus on the differences between people, or latent groups of people, to ask how individuals differ across variables, and can help researchers avoid ecological fallacies when making inferences about individuals. Traditional variable-oriented mediation assumes the population undergoes a homogenous reaction to the mediating process. However, mediation is also described as an intra-individual process where each person passes from a predictor, through a mediator, to an outcome (Collins, Graham, & Flaherty, 1998). Configural frequency mediation is a person-oriented analysis of contingency tables that has not been well-studied or implemented since its introduction in the literature (von Eye, Mair, & Mun, 2010; von Eye, Mun, & Mair, 2009). The purpose of this study is to describe CFM and investigate its statistical properties while comparing it to traditional and casual inference mediation methods. The results of this study show that joint significance mediation tests results in better Type I error rates but limit the person-oriented interpretations of CFM. Although the estimator for logistic regression and causal mediation are different, they both perform well in terms of Type I error and power, although the causal estimator had higher bias than expected, which is discussed in the limitations section.
ContributorsSmyth, Heather Lynn (Author) / Mackinnon, David P (Thesis advisor) / Grimm, Kevin J. (Committee member) / Edwards, Michael C (Committee member) / Arizona State University (Publisher)
Created2019
161577-Thumbnail Image.png
Description
This dissertation considers the question of how convenient access to copious networked observational data impacts our ability to learn causal knowledge. It investigates in what ways learning causality from such data is different from -- or the same as -- the traditional causal inference which often deals with small scale

This dissertation considers the question of how convenient access to copious networked observational data impacts our ability to learn causal knowledge. It investigates in what ways learning causality from such data is different from -- or the same as -- the traditional causal inference which often deals with small scale i.i.d. data collected from randomized controlled trials? For example, how can we exploit network information for a series of tasks in the area of learning causality? To answer this question, the dissertation is written toward developing a suite of novel causal learning algorithms that offer actionable insights for a series of causal inference tasks with networked observational data. The work aims to benefit real-world decision-making across a variety of highly influential applications. In the first part of this dissertation, it investigates the task of inferring individual-level causal effects from networked observational data. First, it presents a representation balancing-based framework for handling the influence of hidden confounders to achieve accurate estimates of causal effects. Second, it extends the framework with an adversarial learning approach to properly combine two types of existing heuristics: representation balancing and treatment prediction. The second part of the dissertation describes a framework for counterfactual evaluation of treatment assignment policies with networked observational data. A novel framework that captures patterns of hidden confounders is developed to provide more informative input for downstream counterfactual evaluation methods. The third part presents a framework for debiasing two-dimensional grid-based e-commerce search with observational search log data where there is an implicit network connecting neighboring products in a search result page. A novel inverse propensity scoring framework that models user behavior patterns for two-dimensional display in e-commerce websites is developed, which aims to optimize online performance of ranking algorithms with offline log data.
ContributorsGuo, Ruocheng (Author) / Liu, Huan (Thesis advisor) / Candan, K. Selcuk (Committee member) / Xue, Guoliang (Committee member) / Kiciman, Emre (Committee member) / Arizona State University (Publisher)
Created2021
190865-Thumbnail Image.png
Description
This dissertation centers on treatment effect estimation in the field of causal inference, and aims to expand the toolkit for effect estimation when the treatment variable is binary. Two new stochastic tree-ensemble methods for treatment effect estimation in the continuous outcome setting are presented. The Accelerated Bayesian Causal Forrest (XBCF)

This dissertation centers on treatment effect estimation in the field of causal inference, and aims to expand the toolkit for effect estimation when the treatment variable is binary. Two new stochastic tree-ensemble methods for treatment effect estimation in the continuous outcome setting are presented. The Accelerated Bayesian Causal Forrest (XBCF) model handles variance via a group-specific parameter, and the Heteroskedastic version of XBCF (H-XBCF) uses a separate tree ensemble to learn covariate-dependent variance. This work also contributes to the field of survival analysis by proposing a new framework for estimating survival probabilities via density regression. Within this framework, the Heteroskedastic Accelerated Bayesian Additive Regression Trees (H-XBART) model, which is also developed as part of this work, is utilized in treatment effect estimation for right-censored survival outcomes. All models have been implemented as part of the XBART R package, and their performance is evaluated via extensive simulation studies with appropriate sets of comparators. The contributed methods achieve similar levels of performance, while being orders of magnitude (sometimes as much as 100x) faster than comparator state-of-the-art methods, thus offering an exciting opportunity for treatment effect estimation in the large data setting.
ContributorsKrantsevich, Nikolay (Author) / Hahn, P Richard (Thesis advisor) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Lan, Shiwei (Committee member) / He, Jingyu (Committee member) / Arizona State University (Publisher)
Created2023