Matching Items (11)
Filtering by

Clear all filters

152149-Thumbnail Image.png
Description
Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating

Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain sched- uled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.
ContributorsSteenis, Joel (Author) / Ayyanar, Raja (Thesis advisor) / Mittelmann, Hans (Committee member) / Tsakalis, Konstantinos (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
152897-Thumbnail Image.png
Description
In-band full-duplex relays are envisioned as promising solution to increase the throughput of next generation wireless communications. Full-duplex relays, being able to transmit and receive at same carrier frequency, offers increased spectral efficiency compared to half-duplex relays that transmit and receive at different frequencies or times. The practical implementation of

In-band full-duplex relays are envisioned as promising solution to increase the throughput of next generation wireless communications. Full-duplex relays, being able to transmit and receive at same carrier frequency, offers increased spectral efficiency compared to half-duplex relays that transmit and receive at different frequencies or times. The practical implementation of full-duplex relays is limited by the strong self-interference caused by the coupling of relay's own transit signals to its desired received signals. Several techniques have been proposed in literature to mitigate the relay self-interference. In this thesis, the performance of in-band full-duplex multiple-input multiple-output (MIMO) relays is considered in the context of simultaneous communications and channel estimation. In particular, adaptive spatial transmit techniques is considered to protect the full-duplex radio's receive array. It is assumed that relay's transmit and receive antenna phase centers are physically distinct. This allows the radio to employ adaptive spatial transmit and receive processing to mitigate self-interference.

The performance of this protection is dependent upon numerous factors, including channel estimation accuracy, which is the focus of this thesis. In particular, the concentration is on estimating the self-interference channel. A novel approach of simultaneous signaling to estimate the self-interference channel in MIMO full-duplex relays is proposed. To achieve this simultaneous communications

and channel estimation, a full-rank pilot signal at a reduced relative power is transmitted simultaneously with a low rank communication waveform. The self-interference mitigation is investigated in the context of eigenvalue spread of spatial relay receive co-variance matrix. Performance is demonstrated by using simulations,

in which orthogonal-frequency division-multiplexing communications and pilot sequences are employed.
ContributorsSekhar, Kishore Kumar (Author) / Bliss, Daniel W (Thesis advisor) / Kitchen, Jennifer (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2014
152886-Thumbnail Image.png
Description
As the number of devices with wireless capabilities and the proximity of these devices to each other increases, better ways to handle the interference they cause need to be explored. Also important is for these devices to keep up with the demand for data rates while not compromising on

As the number of devices with wireless capabilities and the proximity of these devices to each other increases, better ways to handle the interference they cause need to be explored. Also important is for these devices to keep up with the demand for data rates while not compromising on industry established expectations of power consumption and mobility. Current methods of distributing the spectrum among all participants are expected to not cope with the demand in a very near future. In this thesis, the effect of employing sophisticated multiple-input, multiple-output (MIMO) systems in this regard is explored. The efficacy of systems which can make intelligent decisions on the transmission mode usage and power allocation to these modes becomes relevant in the current scenario, where the need for performance far exceeds the cost expendable on hardware. The effect of adding multiple antennas at either ends will be examined, the capacity of such systems and of networks comprised of many such participants will be evaluated. Methods of simulating said networks, and ways to achieve better performance by making intelligent transmission decisions will be proposed. Finally, a way of access control closer to the physical layer (a 'statistical MAC') and a possible metric to be used for such a MAC is suggested.
ContributorsThontadarya, Niranjan (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2014
156661-Thumbnail Image.png
Description
Multiple-input multiple-output systems have gained focus in the last decade due to the benefits they provide in enhancing the quality of communications. On the other hand, full-duplex communication has attracted remarkable attention due to its ability to improve the spectral efficiency compared to the existing half-duplex systems. Using full-duplex communications

Multiple-input multiple-output systems have gained focus in the last decade due to the benefits they provide in enhancing the quality of communications. On the other hand, full-duplex communication has attracted remarkable attention due to its ability to improve the spectral efficiency compared to the existing half-duplex systems. Using full-duplex communications on MIMO co-operative networks can provide us solutions that can completely outperform existing systems with simultaneous transmission and reception at high data rates.

This thesis considers a full-duplex MIMO relay which amplifies and forwards the received signals, between a source and a destination that do not a have line of sight. Full-duplex mode raises the problem of self-interference. Though all the links in the system undergo frequency flat fading, the end-to-end effective channel is frequency selective. This is due to the imperfect cancellation of the self-interference at the relay and this residual self-interference acts as intersymbol interference at the destination which is treated by equalization. This also leads to complications in form of recursive equations to determine the input-output relationship of the system. This also leads to complications in the form of recursive equations to determine the input-output relationship of the system.

To overcome this, a signal flow graph approach using Mason's gain formula is proposed, where the effective channel is analyzed with keen notice to every loop and path the signal traverses. This gives a clear understanding and awareness about the orders of the polynomials involved in the transfer function, from which desired conclusions can be drawn. But the complexity of Mason's gain formula increases with the number of antennas at relay which can be overcome by the proposed linear algebraic method. Input-output relationship derived using simple concepts of linear algebra can be generalized to any number of antennas and the computation complexity is comparatively very low.

For a full-duplex amplify-and-forward MIMO relay system, assuming equalization at the destination, new mechanisms have been implemented at the relay that can compensate the effect of residual self-interference namely equal-gain transmission and antenna selection. Though equal-gain transmission does not perform better than the maximal ratio transmission, a trade-off can be made between performance and implementation complexity. Using the proposed antenna selection strategy, one pair of transmit-receive antennas at the relay is selected based on four selection criteria discussed. Outage probability analysis is performed for all the strategies presented and detailed comparison has been established. Considering minimum mean-squared error decision feedback equalizer at the destination, a bound on the outage probability has been obtained for the antenna selection case and is used for comparisons. A cross-over point is observed while comparing the outage probabilities of equal-gain transmission and antenna selection techniques, as the signal-to-noise ratio increases and from that point antenna selection outperforms equal-gain transmission and this is explained by the fact of reduced residual self-interference in antenna selection method.
ContributorsJonnalagadda, Geeta Sankar Kalyan (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Bliss, Daniel (Committee member) / Kosut, Oliver (Committee member) / Arizona State University (Publisher)
Created2018
154307-Thumbnail Image.png
Description
Self-control has been shown to predict both health risk and health protective outcomes. Although top-down or “good” self-control is typically examined as a unidimensional construct, research on “poor” self-control suggests that multiple dimensions may be necessary to capture aspects of self-control. The current study sought to create a new brief

Self-control has been shown to predict both health risk and health protective outcomes. Although top-down or “good” self-control is typically examined as a unidimensional construct, research on “poor” self-control suggests that multiple dimensions may be necessary to capture aspects of self-control. The current study sought to create a new brief survey measure of top-down self-control that differentiates between self-control capacity, internal motivation, and external motivation. Items were adapted from the Brief Self-Control Scale (BSCS; Tangney, Baumeister, & Boone, 2004) and were administered through two online surveys to 347 undergraduate students enrolled in introductory psychology courses at Arizona State University. The Self-Control Motivation and Capacity Survey (SCMCS) showed strong evidence of validity and reliability. Exploratory and confirmatory factor analyses supported a 3-factor structure of the scale consistent with the underlying theoretical model. The final 15-item measure demonstrated excellent model fit, chi-square = 89.722 p=.077, CFI = .989, RMSEA = .032, SRMR = .045. Despite several limitations including the cross-sectional nature of most analyses, self-control capacity, internal motivation, and external motivation uniquely related to various self-reported behavioral outcomes, and accounted for additional variance beyond that accounted for by the BSCS. Future studies are needed to establish the stability of multiple dimensions of self-control, and to develop state-like and domain-specific measures of self-control. While more research in this area is needed, the current study demonstrates the importance of studying multiple aspects of top-down self-control, and may ultimately facilitate the tailoring of interventions to the needs of individuals based on unique profiles of self-control capacity and motivation.
ContributorsPapova, Anna (Author) / Corbin, William R. (Thesis advisor) / Karoly, Paul (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2016
189243-Thumbnail Image.png
Description
Informed Consent is a ubiquitous way of enshrining choice in the United States which regulates social relations in domains as varied as health, research, access to institutions, and prisons. Informed consent describes an imagined epistemic relationship between right knowledge and legitimate choice, where judgements of capacitation determine whether a person

Informed Consent is a ubiquitous way of enshrining choice in the United States which regulates social relations in domains as varied as health, research, access to institutions, and prisons. Informed consent describes an imagined epistemic relationship between right knowledge and legitimate choice, where judgements of capacitation determine whether a person is the right sort of person to take up knowledge which will render them agential under conditions of asymmetrical power. It has been developed over and over to solve problems of injustice, where the injustice in question is understood in terms of undue infringement on individual autonomy, and the logic of informed consent is re-invented to reframe the problem at hand as a rightful matter of individual choice. It is imagined to respect autonomy, and to perform a transformative "moral magic" that makes the forbidden quotidian. This dissertation develops this account of informed consent through a series of cases, each of which explicates different aspects of the technopolitics of informed consent. It begins with genetic counseling as a paradigm case in the logic of informed consent: a well-developed field that emerged to inform people about genetics and genomics in the interest not only of individual reproductive choice, but in opposition to eugenic shaping of populations through genetic knowledge. Next, pro- and anti- abortion deployments of informed consent illustrate an epistemology of information itself, which is understood to agentialize as well as to serve as a site for refusing choice to those deemed incapacitated. Third, liability waivers and requests for student informed consent on university campuses during the pandemic show informed consent to be a tool for the exercise of biopolitics and, in particular, for making responsible subjects. Finally, civil libertarian opposition to migrant genetic testing on the grounds that migrants weren’t asked for consent demonstrates a tight coupling between consent, imaginations of just state-subject relations, and what it means to be recognized as a person. Ultimately, this dissertation argues for a practice of attention that sees informed consent as an important site for the exercise of power and offers frameworks for analyzing it as such.
ContributorsDietz, Elizabeth A (Author) / Hurlbut, Ben (Thesis advisor) / Reynolds, Joel M (Committee member) / Brian, Jennifer (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2023
187477-Thumbnail Image.png
Description2021年10月24日,中共中央、国务院印发《关于全面准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》,再次对碳达峰碳中和做出战略部署。意见中重点指出,到2030年单位国内生产总值能耗大幅下降;与2005年相比,单位GDP的二氧化碳排放量下降了65%以上;非化石能源消费比例达到25%左右。11月7日,中共中央、国务院发布关于深入打好污染防治攻坚战的意见。其中提到,坚决遏制高耗能、高排放项目盲目发展。2020年第七十五届联合国大会上,我国向世界郑重承诺:力争在2030年前实现碳达峰,努力争取在2060年前实现碳中和。 实现碳达峰、碳中和目标,意味着我国在产业结构、能源结构、投资结构、生活方式等方面都将发生深刻转变。服务好碳达峰、碳中和的战略部署,是未来一段时期金融工作的重点之一。通过对电解铝环节能耗控制和总量控制是实现碳排放下降的重要途径之一。 目前大多研究文献集中在宏观层面的“双碳”目标趋势与热点分析,研究推导缺乏数据支撑。大多数文献以某一个因子为重点进行研究,研究具有片面性。为了有效量化通过对电解铝行业产能布局、产量调整,通过对电解铝上市企业经营数据在"双碳"目标实施前后变化的定量分析,进一步理解和分析碳达峰及碳中和对电解铝行业的影响。 量化和评估碳达峰和碳中和目标实施前后对电解铝行业的影响,本文将电解铝行业政策实施前后的政策变量作为此研究的主要自变量。同时,将电解铝上市企业的产能或产量作为因变量,将总资产、资产负债率等作为控制变量予以研究。本文选取的数据示例来自于WIND数据库和CSMAR经济金融研究数据库。 距离碳达峰及碳中和具体目标首次公布的时间短,碳达峰、碳中和工作的路线图、施工图处于建立与推进阶段,可研究的目标公布后的上市企业样本数据有限,在研究电解铝上市企业样本的基础上,本文也尝试用同样的方法研究控制组上市企业的财务数据及产能、产量数据,通过对比"双碳"目标对电解铝影响的差异,更加完整地论证碳中和及碳达峰战略对电解铝行业的影响。
ContributorsRuan, Xiaowen (Author) / Huang, Xiaochuan (Thesis advisor) / Sun, Jianfei (Thesis advisor) / Wang, Tan (Committee member) / Arizona State University (Publisher)
Created2023
157677-Thumbnail Image.png
Description
Self-control has been shown to be an important influence behind a variety of risk and protective behaviors, such as substance abuse. Although prior research points to the existence of multiple dimensions of self-control, this concept is not consistently defined and frequently only studied as a conglomerate in clinical research. The

Self-control has been shown to be an important influence behind a variety of risk and protective behaviors, such as substance abuse. Although prior research points to the existence of multiple dimensions of self-control, this concept is not consistently defined and frequently only studied as a conglomerate in clinical research. The current study sought to examine how two experimental manipulations of subcomponents of self-control (motivation and self-efficacy) affect real-world consumptive behavior after accounting for executive function. Additionally, the validity and reliability of a brief state survey measure of perceived self-control capacity, internal motivation, and external motivation was tested. The goal was to examine how basic scientific principles involved in self-control translate into clinically relevant behaviors, which may inform understanding of momentary lapses in self-control behavior, potentially leading to novel prevention and intervention efforts. 94 college students completed a 1-2 hour laboratory protocol during which they completed survey and laboratory-based tasks of self-control and related behaviors, executive function, and ad libitum alcohol consumption. Results showed that the self-efficacy manipulation successfully increased perceived self-control capacity, although this did not lead to a significant reduction in consumption. The motivation manipulation neither increased motivation nor reduced consumption in this sample. However, the brief state survey measure of self-control subcomponents demonstrated strong test-retest reliability and distinction from trait self-control, demonstrating its viability for use in future research. By elucidating the relationships between specific mechanisms of self-control, laboratory-based tasks and manipulations, and real-world consumptive behaviors, prevention and intervention efforts for problems such as alcohol abuse may be tailored to the needs of the individual and made more impactful and cost-effective.
ContributorsPapova, Anna (Author) / Corbin, William R. (Thesis advisor) / Brewer, Gene (Committee member) / Karoly, Paul (Committee member) / McClure, Samuel (Committee member) / Arizona State University (Publisher)
Created2020
157976-Thumbnail Image.png
Description
The open nature of the wireless communication medium makes it inherently vulnerable to an active attack, wherein a malicious adversary (or jammer) transmits into the medium to disrupt the operation of the legitimate users. Therefore, developing techniques to manage the presence of a jammer and to characterize the effect of

The open nature of the wireless communication medium makes it inherently vulnerable to an active attack, wherein a malicious adversary (or jammer) transmits into the medium to disrupt the operation of the legitimate users. Therefore, developing techniques to manage the presence of a jammer and to characterize the effect of an attacker on the fundamental limits of wireless communication networks is important. This dissertation studies various Gaussian communication networks in the presence of such an adversarial jammer.

First of all, a standard Gaussian channel is considered in the presence of a jammer, known as a Gaussian arbitrarily-varying channel, but with list-decoding at the receiver. The receiver decodes a list of messages, instead of only one message, with the goal of the correct message being an element of the list. The capacity is characterized, and it is shown that under some transmitter's power constraints the adversary is able to suspend the communication between the legitimate users and make the capacity zero.

Next, generalized packing lemmas are introduced for Gaussian adversarial channels to achieve the capacity bounds for three Gaussian multi-user channels in the presence of adversarial jammers. Inner and outer bounds on the capacity regions of Gaussian multiple-access channels, Gaussian broadcast channels, and Gaussian interference channels are derived in the presence of malicious jammers. For the Gaussian multiple-access channels with jammer, the capacity bounds coincide. In this dissertation, the adversaries can send any arbitrary signals to the channel while none of the transmitter and the receiver knows the adversarial signals' distribution.

Finally, the capacity of the standard point-to-point Gaussian fading channel in the presence of one jammer is investigated under multiple scenarios of channel state information availability, which is the knowledge of exact fading coefficients. The channel state information is always partially or fully known at the receiver to decode the message while the transmitter or the adversary may or may not have access to this information. Here, the adversary model is the same as the previous cases with no knowledge about the user's transmitted signal except possibly the knowledge of the fading path.
ContributorsHosseinigoki, Fatemeh (Author) / Kosut, Oliver (Thesis advisor) / Zhang, Junshan (Committee member) / Sankar, Lalitha (Committee member) / Bliss, Daniel (Committee member) / Arizona State University (Publisher)
Created2019
153555-Thumbnail Image.png
Description
Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material

Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle is performed under current of 0.1 C.
ContributorsGao, Tianxiang (Author) / He, Ximin (Thesis advisor) / Sieradzki, Karl (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2015