Matching Items (3)
Filtering by

Clear all filters

152050-Thumbnail Image.png
Description
In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group)

In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group) be the $\epsilon_i$-eigenspace component of the $p$-Sylow subgroup of the class group of the field at the $m$-th level in a $\mathbb{Z}_p$-extension; and let $IACG^i_m$ (Iwasawa analytic class group) be ${\mathbb{Z}_p[[T]]/((1+T)^{p^m}-1,f(T,\omega^{1-i}))}$, where $f$ is the associated Iwasawa power series. It is expected that $CG_m^i$ and $IACG^i_m$ be isomorphic, providing us with a powerful connection between algebraic and analytic techniques; however, as of yet, this isomorphism is unestablished in general. I consider the existence and the properties of an exact sequence $$0\longrightarrow\ker{\longrightarrow}CG_m^i{\longrightarrow}IACG_m^i{\longrightarrow}\textrm{coker}\longrightarrow0.$$ In the case of a $\mathbb{Z}_p$-extension where the Main Conjecture is established, there exists a pseudo-isomorphism between the respective inverse limits of $CG_m^i$ and $IACG_m^i$. I consider conditions for when such a pseudo-isomorphism immediately gives the existence of the desired exact sequence, and I also consider work-around methods that preserve cardinality for otherwise. However, I primarily focus on constructing conditions to verify if a given $m$ is sufficiently large that the kernel and cokernel of the above exact sequence have become well-behaved, providing similarity of growth both in the size and in the structure of $CG_m^i$ and $IACG_m^i$; as well as conditions to determine if any such $m$ exists. The primary motivating idea is that if $IACG_m^i$ is relatively easy to work with, and if the relationship between $CG_m^i$ and $IACG_m^i$ is understood; then $CG_m^i$ becomes easier to work with. Moreover, while the motivating framework is stated concretely in terms of the cyclotomic $\mathbb{Z}_p$-extension of $p$-power roots of unity, all results are generally applicable to arbitrary $\mathbb{Z}_p$-extensions as they are developed in terms of Iwasawa-Theory-inspired, yet abstracted, algebraic results on maps between inverse limits.
ContributorsElledge, Shawn Michael (Author) / Childress, Nancy (Thesis advisor) / Bremner, Andrew (Committee member) / Fishel, Susanna (Committee member) / Jones, John (Committee member) / Paupert, Julien (Committee member) / Arizona State University (Publisher)
Created2013
156583-Thumbnail Image.png
Description
Since the seminal work of Tur ́an, the forbidden subgraph problem has been among the central questions in extremal graph theory. Let ex(n;F) be the smallest number m such that any graph on n vertices with m edges contains F as a subgraph. Then the forbidden subgraph problem asks to

Since the seminal work of Tur ́an, the forbidden subgraph problem has been among the central questions in extremal graph theory. Let ex(n;F) be the smallest number m such that any graph on n vertices with m edges contains F as a subgraph. Then the forbidden subgraph problem asks to find ex(n; F ) for various graphs F . The question can be further generalized by asking for the extreme values of other graph parameters like minimum degree, maximum degree, or connectivity. We call this type of question a Tura ́n-type problem. In this thesis, we will study Tura ́n-type problems and their variants for graphs and hypergraphs.

Chapter 2 contains a Tura ́n-type problem for cycles in dense graphs. The main result in this chapter gives a tight bound for the minimum degree of a graph which guarantees existence of disjoint cycles in the case of dense graphs. This, in particular, answers in the affirmative a question of Faudree, Gould, Jacobson and Magnant in the case of dense graphs.

In Chapter 3, similar problems for trees are investigated. Recently, Faudree, Gould, Jacobson and West studied the minimum degree conditions for the existence of certain spanning caterpillars. They proved certain bounds that guarantee existence of spanning caterpillars. The main result in Chapter 3 significantly improves their result and answers one of their questions by proving a tight minimum degree bound for the existence of such structures.

Chapter 4 includes another Tur ́an-type problem for loose paths of length three in a 3-graph. As a corollary, an upper bound for the multi-color Ramsey number for the loose path of length three in a 3-graph is achieved.
ContributorsYie, Jangwon (Author) / Czygrinow, Andrzej (Thesis advisor) / Kierstead, Henry (Committee member) / Colbourn, Charles (Committee member) / Fishel, Susanna (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2018
158314-Thumbnail Image.png
Description
The chromatic number $\chi(G)$ of a graph $G=(V,E)$ is the minimum

number of colors needed to color $V(G)$ such that no adjacent vertices

receive the same color. The coloring number $\col(G)$ of a graph

$G$ is the minimum number $k$ such that there exists a linear ordering

of $V(G)$ for which each vertex has

The chromatic number $\chi(G)$ of a graph $G=(V,E)$ is the minimum

number of colors needed to color $V(G)$ such that no adjacent vertices

receive the same color. The coloring number $\col(G)$ of a graph

$G$ is the minimum number $k$ such that there exists a linear ordering

of $V(G)$ for which each vertex has at most $k-1$ backward neighbors.

It is well known that the coloring number is an upper bound for the

chromatic number. The weak $r$-coloring number $\wcol_{r}(G)$ is

a generalization of the coloring number, and it was first introduced

by Kierstead and Yang \cite{77}. The weak $r$-coloring number $\wcol_{r}(G)$

is the minimum integer $k$ such that for some linear ordering $L$

of $V(G)$ each vertex $v$ can reach at most $k-1$ other smaller

vertices $u$ (with respect to $L$) with a path of length at most

$r$ and $u$ is the smallest vertex in the path. This dissertation proves that $\wcol_{2}(G)\le23$ for every planar graph $G$.

The exact distance-$3$ graph $G^{[\natural3]}$ of a graph $G=(V,E)$

is a graph with $V$ as its set of vertices, and $xy\in E(G^{[\natural3]})$

if and only if the distance between $x$ and $y$ in $G$ is $3$.

This dissertation improves the best known upper bound of the

chromatic number of the exact distance-$3$ graphs $G^{[\natural3]}$

of planar graphs $G$, which is $105$, to $95$. It also improves

the best known lower bound, which is $7$, to $9$.

A class of graphs is nowhere dense if for every $r\ge 1$ there exists $t\ge 1$ such that no graph in the class contains a topological minor of the complete graph $K_t$ where every edge is subdivided at most $r$ times. This dissertation gives a new characterization of nowhere dense classes using generalized notions of the domination number.
ContributorsAlmulhim, Ahlam (Author) / Kierstead, Henry (Thesis advisor) / Sen, Arunabha (Committee member) / Richa, Andrea (Committee member) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Arizona State University (Publisher)
Created2020