Matching Items (4)
Filtering by

Clear all filters

152040-Thumbnail Image.png
Description
"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small

"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small size devices are mainly concentrated around Micro-electro-mechanical-system (MEMS) technology. MEMS accelerometers are widely published and used in consumer electronics, such as smart phones, gaming consoles, anti-shake camera and vibration detectors. This study represents liquid-state low frequency micro-accelerometer based on molecular electronic transducer (MET), in which inertial mass is not the only but also the conversion of mechanical movement to electric current signal is the main utilization of the ionic liquid. With silicon-based planar micro-fabrication, the device uses a sub-micron liter electrolyte droplet sealed in oil as the sensing body and a MET electrode arrangement which is the anode-cathode-cathode-anode (ACCA) in parallel as the read-out sensing part. In order to sensing the movement of ionic liquid, an imposed electric potential was applied between the anode and the cathode. The electrode reaction, I_3^-+2e^___3I^-, occurs around the cathode which is reverse at the anodes. Obviously, the current magnitude varies with the concentration of ionic liquid, which will be effected by the movement of liquid droplet as the inertial mass. With such structure, the promising performance of the MET device design is to achieve 10.8 V/G (G=9.81 m/s^2) sensitivity at 20 Hz with the bandwidth from 1 Hz to 50 Hz, and a low noise floor of 100 ug/sqrt(Hz) at 20 Hz.
ContributorsLiang, Mengbing (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Kozicki, Micheal (Committee member) / Arizona State University (Publisher)
Created2013
154112-Thumbnail Image.png
Description
In this thesis, an approach to develop low-frequency accelerometer based on molecular electronic transducers (MET) in an electrochemical cell is presented. Molecular electronic transducers are a class of inertial sensors which are based on an electrochemical mechanism. Motion sensors based on MET technology consist of an electrochemical cell that

In this thesis, an approach to develop low-frequency accelerometer based on molecular electronic transducers (MET) in an electrochemical cell is presented. Molecular electronic transducers are a class of inertial sensors which are based on an electrochemical mechanism. Motion sensors based on MET technology consist of an electrochemical cell that can be used to detect the movement of liquid electrolyte between electrodes by converting it to an output current. Seismometers based on MET technology are attractive for planetary applications due to their high sensitivity, low noise, small size and independence on the direction of sensitivity axis. In addition, the fact that MET based sensors have a liquid inertial mass with no moving parts makes them rugged and shock tolerant (basic survivability has been demonstrated to >20 kG).

A Zn-Cu electrochemical cell (Galvanic cell) was applied in the low-frequency accelerometer. Experimental results show that external vibrations (range from 18 to 70 Hz) were successfully detected by this accelerometer as reactions Zn→〖Zn〗^(2+)+2e^- occurs around the anode and 〖Cu〗^(2+)+2e^-→Cu around the cathode. Accordingly, the sensitivity of this MET device design is to achieve 10.4 V/G at 18 Hz. And the sources of noise have been analyzed.
ContributorsZhao, Zuofeng (Author) / Yu, Hongyu (Thesis advisor) / Zhang, Junshan (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2015
155105-Thumbnail Image.png
Description
The instrumentational measurement of seismic motion is important for a wide range of research fields and applications, such as seismology, geology, physics, civil engineering and harsh environment exploration. This report presents series approaches to develop Micro-Electro-Mechanical System (MEMS) enhanced inertial motion sensors including accelerometers, seismometers and inclinometers based on Molecular

The instrumentational measurement of seismic motion is important for a wide range of research fields and applications, such as seismology, geology, physics, civil engineering and harsh environment exploration. This report presents series approaches to develop Micro-Electro-Mechanical System (MEMS) enhanced inertial motion sensors including accelerometers, seismometers and inclinometers based on Molecular Electronic Transducers (MET) techniques.

Seismometers based on MET technology are attractive for planetary applications due to their high sensitivity, low noise floor, small size, absence of fragile mechanical moving parts and independence on the direction of sensitivity axis. By using MEMS techniques, a micro MET seismometer is developed with inter-electrode spacing close to 5 μm. The employment of MEMS improves the sensitivity of fabricated device to above 2500 V/(m/s2) under operating bias of 300 mV and input velocity of 8.4μm/s from 0.08Hz to 80Hz. The lowered hydrodynamic resistance by increasing the number of channels improves the self-noise to -135 dB equivalent to 18nG/√Hz (G=9.8m/s2) around 1.2 Hz.

Inspired by the advantages of combining MET and MEMS technologies on the development of seismometer, a feasibility study of development of a low frequency accelerometer utilizing MET technology with post-CMOS-compatible fabrication processes is performed. In the fabricated accelerometer, the complicated fabrication of mass-spring system in solid-state MEMS accelerometer is replaced with a much simpler post-CMOS-compatible process containing only deposition of a four-electrode MET structure on a planar substrate, and a liquid inertia mass of an electrolyte droplet. With a specific design of 3D printing based package and replace water based iodide solution by room temperature ionic liquid based electrolyte, the sensitivity relative to the ground motion can reach 103.69V/g, with the resolution of 5.25μG/√Hz at 1Hz.

By combining MET techniques and Zn-Cu electrochemical cell (Galvanic cell), this letter demonstrates a passive motion sensor powered by self-electrochemistry energy, named “Battery Accelerometer”. The experimental results indicated the peak sensitivity of battery accelerometer at its resonant frequency 18Hz is 10.4V/G with the resolution of 1.71μG without power consumption.
ContributorsLiang, Mengbing (Author) / Yu, Hongyu (Thesis advisor) / Dai, Lenore (Committee member) / Kozicki, Michael (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2016
155117-Thumbnail Image.png
Description
Ionic liquids (ILs), or low-temperature liquid salts, are a class of materials with unique and useful properties. Made up entirely of ions, ILs are remarkably tunable and diverse as cations and anions can be mixed and matched to yield desired properties. Because of this, IL/water systems range widely—from homogeneous mixtures

Ionic liquids (ILs), or low-temperature liquid salts, are a class of materials with unique and useful properties. Made up entirely of ions, ILs are remarkably tunable and diverse as cations and anions can be mixed and matched to yield desired properties. Because of this, IL/water systems range widely—from homogeneous mixtures to multiphasic systems featuring ionic liquid/liquid interfaces. Even more diversity is added when particles are introduced to these systems, as hard particles or soft-matter microgels interact with both ILs and water in complex ways. This work examines both miscible ionic liquid/water mixture and two-phase, immiscible ionic liquid/water systems. Extensive molecular dynamics (MD) simulations are utilized in conjunction with physical measurements to inform theoretical understanding of the nature of these systems, and this theoretical understanding is related to practical applications—in particular, the development of a low-temperature liquid electrolyte for use in molecular electronic transducer (MET) seismometers, and particle self-assembly and transport at ionic liquid/liquid interfaces such as those in Pickering emulsions.

The homogenous mixture of 1-butyl-3-methylimidazolium iodide and water is examined extensively through MD as well as physical characterization of properties. Molecular ordering within the liquid mixture is related to macroscopic properties. These mixtures are then used as the basis of an electrolyte with unusual characteristics, specifically a wide liquid temperature range with an extremely low lower bound combined with relatively low viscosity allowing excellent performance in the MET sensor. Electrolyte performance is further improved by the addition of fullerene nanoparticles, which dramatically increase device sensitivity. The reasons behind this effect are explored by testing the effect of graphene surface size and through MD simulations of fullerene and a silica nanoparticle (for contrast) in [BMIM][I]/water mixtures.

Immiscible ionic liquid/water systems are explored through MD studies of particles at IL/water interfaces. By increasing the concentration of hydrophobic nanoparticles at the IL/water interface, one study discovers the formation of a commingled IL/water/particle pseudo-phase, and relates this discovery to previously-observed unique behaviors of these interfaces, particularly spontaneous particle transport across the interface. The other study demonstrates that IL hydrophobicity can influence the deformation of thermo-responsive soft particles at the liquid/liquid interface.
ContributorsNickerson, Stella Day (Author) / Dai, Lenore L (Thesis advisor) / Yu, Hongyu (Committee member) / Lind, Mary Laura (Committee member) / Mu, Bin (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2016