Matching Items (11)

152034-Thumbnail Image.png

Oligomeric amyloid-beta as a potential biomarker for Alzheimer's disease

Description

Alzheimer's Disease (AD) is a progressive neurodegenerative disease accounting for 50-80% of dementia cases in the country. This disease is characterized by the deposition of extracellular plaques occurring in regions

Alzheimer's Disease (AD) is a progressive neurodegenerative disease accounting for 50-80% of dementia cases in the country. This disease is characterized by the deposition of extracellular plaques occurring in regions of the brain important for cognitive function. A primary component of these plaques is the amyloid-beta protein. While a natively unfolded protein, amyloid-beta can misfold and aggregate generating a variety of different species including numerous different soluble oligomeric species some of which are precursors to the neurofibrillary plaques. Various of the soluble amyloid-beta oligomeric species have been shown to be toxic to cells and their presence may correlate with progression of AD. Current treatment options target the dementia symptoms, but there is no effective cure or alternative to delay the progression of the disease once it occurs. Amyloid-beta aggregates show up many years before symptoms develop, so detection of various amyloid-beta aggregate species has great promise as an early biomarker for AD. Therefore reagents that can selectively identify key early oligomeric amyloid-beta species have value both as potential diagnostics for early detection of AD and as well as therapeutics that selectively target only the toxic amyloid-beta aggregate species. Earlier work in the lab includes development of several different single chain antibody fragments (scFvs) against different oligomeric amyloid-beta species. This includes isolation of C6 scFv against human AD brain derived oligomeric amyloid-beta (Kasturirangan et al., 2013). This thesis furthers research in this direction by improving the yields and investigating the specificity of modified C6 scFv as a diagnostic for AD. It is motivated by experiments reporting low yields of the C6 scFv. We also used the C6T scFv to characterize the variation in concentration of this particular oligomeric amyloid-beta species with age in a triple transgenic AD mouse model. We also show that C6T can be used to differentiate between post-mortem human AD, Parkinson's disease (PD) and healthy human brain samples. These results indicate that C6T has potential value as a diagnostic tool for early detection of AD.

Contributors

Agent

Created

Date Created
  • 2013

156113-Thumbnail Image.png

The investigation of sucrose and fructose in spot versus 24-hour urine as biomarkers of sugars intake

Description

Background: Twenty-four hour urinary sucrose and fructose (24uSF) has been developed as a dietary biomarker for total sugars intake. Collection of 24-h urine is associated with high costs and

Background: Twenty-four hour urinary sucrose and fructose (24uSF) has been developed as a dietary biomarker for total sugars intake. Collection of 24-h urine is associated with high costs and heavy participant burden, while collection of spot urine samples can be easily implemented in research protocols. The aim of this thesis is to investigate the utility of uSF biomarker measured in spot urine. Methods: 15 participants age 22 to 49 years completed a 15-day feeding study in which they consumed their usual diet under controlled conditions, and recorded the time each meal was consumed. Two nonconsecutive 24-hour urines, where each urine void was collected in a separate container, were collected. Four timed voids (morning, afternoon, evening, and next day) were identified based on time of void and meal time. Urine samples were measured for sucrose, fructose and creatinine. Variability of uSF excretion was assessed by coefficient of variation (%CV) and variance ratios. Pearson correlation coefficient and multiple linear regression were used to investigate the association between uSF in each timed void and corresponding 24uSF excretion. Results: The two-day mean uSF was 50.6 mg (SD=29.5) for the 24-h urine, and ranged from 4.5 to 7.5 mg/void for the timed voids. The afternoon void uSF had the lowest within-subject variability (49.1%), and lowest within- to between-subject variance ratio (0.2). The morning and afternoon void uSF had the strongest correlation with 24-h uSF for both mg/void (r=0.80 and r=0.72) and mg/creatinine (r=0.72 and r=0.67), respectively. Finally, the afternoon void uSF along with other covariates had the strongest predictive ability of 24-h uSF excretion (mg/void) (Adjusted R2= 0.69; p=0.002), whereas the morning void had the strongest predictive ability of 24-h uSF excretion (mg/g creatinine) (adjusted R2= 0.58; p=0.008). Conclusions: The afternoon void uSF had the most favorable reproducibility estimates, strong correlation with 24uSF excretion, and explained greatest proportion of the variability in 24uSF. USF in mg/void may be better to use than uSF in mg/g creatinine as a biomarker in spot urine. These findings need to be confirmed in a larger study, and in a study population with a wide range of sugars intake.

Contributors

Agent

Created

Date Created
  • 2018

155443-Thumbnail Image.png

Sleep-related mediators of the physical activity and sedentary behavior-cardiometabolic biomarker relationship in middle age adults

Description

Physical activity, sedentary behaviors, and sleep are often associated with cardiometabolic biomarkers commonly found in metabolic syndrome. These relationships are well studied, and yet there are still questions on how

Physical activity, sedentary behaviors, and sleep are often associated with cardiometabolic biomarkers commonly found in metabolic syndrome. These relationships are well studied, and yet there are still questions on how each activity may affect cardiometabolic biomarkers. The objective of this study was to examine data from the BeWell24 studies to evaluate the relationship between objectively measured physical activity and sedentary behaviors and cardiometabolic biomarkers in middle age adults, while also determining if sleep quality and duration mediates this relationship. A group of inactive participants (N = 29, age = 52.1 ± 8.1 years, 38% female) with increased risk for cardiometabolic disease were recruited to participate in BeWell24, a trial testing the impact of a lifestyle-based, multicomponent smartphone application targeting sleep, sedentary, and more active behaviors. During baseline, interim (4 weeks), and posttest visits (8 weeks), biomarker measurements were collected for weight (kg), waist circumference (cm), glucose (mg/dl), insulin (uU/ml), lipids (mg/dl), diastolic and systolic blood pressures (mm Hg), and C reactive protein (mg/L). Participants wore validated wrist and thigh sensors for one week intervals at each time point to measure sedentary behavior, physical activity, and sleep outcomes. Long bouts of sitting time (>30 min) significantly affected triglycerides (beta = .15 (±.07), p<.03); however, no significant mediation effects for sleep quality or duration were present. No other direct effects were observed between physical activity measurements and cardiometabolic biomarkers. The findings of this study suggest that reductions in long bouts of sitting time may support reductions in triglycerides, yet these effects were not mediated by sleep-related improvements.

Contributors

Agent

Created

Date Created
  • 2017

158586-Thumbnail Image.png

Point of Care Detection of Iron Metabolism Parameters Through Colorimetric Sensing

Description

Abnormally low or high blood iron levels are common health conditions worldwide and can seriously affect an individual’s overall well-being. A low-cost point-of-care technology that measures blood iron markers with

Abnormally low or high blood iron levels are common health conditions worldwide and can seriously affect an individual’s overall well-being. A low-cost point-of-care technology that measures blood iron markers with a goal of both preventing and treating iron-related disorders represents a significant advancement in medical care delivery systems. Methods: A novel assay equipped with an accurate, storable, and robust dry sensor strip, as well as a smartphone mount and (iPhone) app is used to measure total iron in human serum. The sensor strip has a vertical flow design and is based on an optimized chemical reaction. The reaction strips iron ions from blood-transport proteins, reduces Fe(III) to Fe(II), and chelates Fe(II) with ferene, with the change indicated by a blue color on the strip. The smartphone mount is robust and controls the light source of the color reading App, which is calibrated to obtain output iron concentration results. The real serum samples are then used to assess iron concentrations from the new assay and validated through intra-laboratory and inter-laboratory experiments. The intra-laboratory validation uses an optimized iron detection assay with multi-well plate spectrophotometry. The inter-laboratory validation method is performed in a commercial testing facility (LabCorp). Results: The novel assay with the dry sensor strip and smartphone mount, and App is seen to be sensitive to iron detection with a dynamic range of 50 - 300 µg/dL, sensitivity of 0.00049 µg/dL, coefficient of variation (CV) of 10.5%, and an estimated detection limit of ~15 µg/dL These analytical specifications are useful for predicting iron deficiency and overloads. The optimized reference method has a sensitivity of 0.00093 µg/dL and CV of 2.2%. The correlation of serum iron concentrations (N=20) between the optimized reference method and the novel assay renders a slope of 0.95, and a regression coefficient of 0.98, suggesting that the new assay is accurate. Lastly, a spectrophotometric study of the iron detection reaction kinetics is seen to reveal the reaction order for iron and chelating agent. Conclusion: The new assay is able to provide accurate results in intra- and inter- laboratory validations and has promising features of both mobility and low-cost.

Contributors

Agent

Created

Date Created
  • 2020

153161-Thumbnail Image.png

Antibody based diagnostic and therapeutic approach for Alzheimer's disease

Description

Alzheimer's disease (AD) is the most common form of dementia leading to cognitive dysfunction and memory loss as well as emotional and behavioral disorders. It is the 6th leading cause

Alzheimer's disease (AD) is the most common form of dementia leading to cognitive dysfunction and memory loss as well as emotional and behavioral disorders. It is the 6th leading cause of death in United States, and the only one among top 10 death causes that cannot be prevented, cured or slowed. An estimated 5.4 million Americans live with AD, and this number is expected to triple by year 2050 as the baby boomers age. The cost of care for AD in the US is about $200 billion each year. Unfortunately, in addition to the lack of an effective treatment or AD, there is also a lack of an effective diagnosis, particularly an early diagnosis which would enable treatment to begin before significant neuronal damage has occurred.

Increasing evidence implicates soluble oligomeric forms of beta-amyloid and tau in the onset and progression of AD. While many studies have focused on beta-amyloid, soluble oligomeric tau species may also play an important role in AD pathogenesis. Antibodies that selectively identify and target specific oligomeric tau variants would be valuable tools for both diagnostic and therapeutic applications and also to study the etiology of AD and other neurodegenerative diseases.

Recombinant human tau (rhTau) in monomeric, dimeric, trimeric and fibrillar forms were synthesized and purified to perform LDH assay on human neuroblastoma cells, so that trimeric but not monomeric or dimeric rhTau was identified as extracellularly neurotoxic to neuronal cells. A novel biopanning protocol was designed based on phage display technique and atomic force microscopy (AFM), and used to isolate single chain antibody variable domain fragments (scFvs) that selectively recognize the toxic tau oligomers. These scFvs selectively bind tau variants in brain tissue of human AD patients and AD-related tau transgenic rodent models and have potential value as early diagnostic biomarkers for AD and as potential therapeutics to selectively target toxic tau aggregates.

Contributors

Agent

Created

Date Created
  • 2014

Molecular profiling plasma extracellular vesicles from breast cancer patients

Description

Extracellular vesicles (EVs) represent a heterogeneous population of small vesicles, consisting of a phospholipidic bilayer surrounding a soluble interior cargo. These vesicles play an important role in cellular communication by

Extracellular vesicles (EVs) represent a heterogeneous population of small vesicles, consisting of a phospholipidic bilayer surrounding a soluble interior cargo. These vesicles play an important role in cellular communication by virtue of their protein, RNA, and lipid content, which can be transferred among cells. Peripheral blood is a rich source of circulating EVs. An analysis of EVs in peripheral blood could provide access to unparalleled amounts of biomarkers of great diagnostic, prognostic as well as therapeutic value. In the current study, a plasma EV enrichment method based on pluronic co-polymer was first established and characterized. Plasma EVs from breast cancer patients were then enriched, profiled and compared to non-cancer controls. Proteins signatures that contributed to the prediction of cancer samples from non-cancer controls were created by a random-forest based cross-validation approach. We found that a large portion of these signatures were related to breast cancer aggression. To verify such findings, KIAA0100, one of the features identified, was chosen for in vitro molecular and cellular studies in the breast cancer cell line MDA-MB-231. We found that KIAA0100 regulates cancer cell aggression in MDA-MB-231 in an anchorage-independent manner and is particularly associated with anoikis resistance through its interaction with HSPA1A. Lastly, plasma EVs contain not only individual proteins, but also numerous molecular complexes. In order to measure millions of proteins, isoforms, and complexes simultaneously, Adaptive Dynamic Artificial Poly-ligand Targeting (ADAPT) platform was applied. ADAPT employs an enriched library of single-stranded oligodeoxynucleotides to profile complex biological samples, thus achieving a deep coverage of system-wide, native biomolecules. Profiling of EVs from breast cancer patients was able to obtain a prediction AUC performance of 0.73 when compared biopsy-positive cancer patient to healthy controls and 0.64 compared to biopsy-negative controls and such performance was not associated with the physical breast condition indicated by BIRAD scores. Taken together, current research demonstrated the potential of profiling plasma EVs in searching for therapeutic targets as well as diagnostic signatures.

Contributors

Agent

Created

Date Created
  • 2018

153975-Thumbnail Image.png

Early detection and treatment of breast cancer by random peptide array in neuN transgenic mouse model

Description

Breast cancer is the most common cancer and currently the second leading cause of death among women in the United States. Patients’ five-year relative survival rate decreases from 99% to

Breast cancer is the most common cancer and currently the second leading cause of death among women in the United States. Patients’ five-year relative survival rate decreases from 99% to 25% when breast cancer is diagnosed late. Immune checkpoint blockage has shown to be a promising therapy to improve patients’ outcome in many other cancers. However, due to the lack of early diagnosis, the treatment is normally given in the later stages. An early diagnosis system for breast cancer could potentially revolutionize current treatment strategies, improve patients’ outcomes and even eradicate the disease. The current breast cancer diagnostic methods cannot meet this demand. A simple, effective, noninvasive and inexpensive early diagnostic technology is needed. Immunosignature technology leverages the power of the immune system to find cancer early. Antibodies targeting tumor antigens in the blood are probed on a high-throughput random peptide array and generate a specific binding pattern called the immunosignature.

In this dissertation, I propose a scenario for using immunosignature technology to detect breast cancer early and to implement an early treatment strategy by using the PD-L1 immune checkpoint inhibitor. I develop a methodology to describe the early diagnosis and treatment of breast cancer in a FVB/N neuN breast cancer mouse model. By comparing FVB/N neuN transgenic mice and age-matched wild type controls, I have found and validated specific immunosignatures at multiple time points before tumors are palpable. Immunosignatures change along with tumor development. Using a late-stage immunosignature to predict early samples, or vice versa, cannot achieve high prediction performance. By using the immunosignature of early breast cancer, I show that at the time of diagnosis, early treatment with the checkpoint blockade, anti-PD-L1, inhibits tumor growth in FVB/N neuN transgenic mouse model. The mRNA analysis of the PD-L1 level in mice mammary glands suggests that it is more effective to have treatment early.

Novel discoveries are changing understanding of breast cancer and improving strategies in clinical treatment. Researchers and healthcare professionals are actively working in the early diagnosis and early treatment fields. This dissertation provides a step along the road for better diagnosis and treatment of breast cancer.

Contributors

Agent

Created

Date Created
  • 2015

153561-Thumbnail Image.png

Cancer autoantibody biomarker discovery and validation using nucleic acid programmable protein array

Description

Currently in the US, many patients with cancer do not benefit from the population-based screening, due to challenges associated with the existing cancer screening scheme. Blood-based diagnostic assays have the

Currently in the US, many patients with cancer do not benefit from the population-based screening, due to challenges associated with the existing cancer screening scheme. Blood-based diagnostic assays have the potential to detect diseases in a non-invasive way. Proteins released from small early tumors may only be present intermittently and get diluted to tiny concentrations in the blood, making them difficult to use as biomarkers. However, they can induce autoantibody (AAb) responses, which can amplify the signal and persist in the blood even if the antigen is gone. Circulating autoantibodies is a promising class of molecules that have potential to serve as early detection biomarkers for cancers. This Ph.D thesis aims to screen for autoantibody biomarkers for the early detection of two deadly cancer, basal-like breast cancer and lung adenocarcinoma. First, a method was developed to display proteins in both native and denatured conformation on protein array. This method adopted a novel protein tag technology, called HaloTag, to covalently immobilize proteins on glass slide surface. The covalent attachment allowed these proteins to endure harsh treatment without getting dissociated from slide surface, which enabled the profiling of antibody responses against both conformational and linear epitopes. Next, a plasma screening protocol was optimized to significantly increase signal to noise ratio of protein array based AAb detection. Following this, the AAb responses in basal-like breast cancer were explored using nucleic acid programmable protein arrays (NAPPA) containing 10,000 full-length human proteins in 45 cases and 45 controls. After verification in a large sample set (145 basal-like breast cancer cases / 145 controls / 70 non-basal breast cancer) by ELISA, a 13-AAb classifier was developed to differentiate patients from controls with a sensitivity of 33% at 98% specificity. Similar approach was also applied to the lung cancer study to identify AAbs that distinguished lung cancer patients from computed-tomography positive benign pulmonary nodules (137 lung cancer cases, 127 smoker controls, 170 benign controls). In this study, two panels of AAbs were discovered that showed promising sensitivity and specificity. Six out of eight AAb targets were also found to have elevated mRNA level in lung adenocarcinoma patients using TCGA data. These projects as a whole provide novel insights on the association between AAbs and cancer, as well as general B cell antigenicity against self-proteins.

Contributors

Agent

Created

Date Created
  • 2015

157231-Thumbnail Image.png

Proteins and their glycosylations as diagnostic biomarkers of Valley Fever

Description

Valley Fever (VF), is a potentially lethal fungal pneumonia caused by Coccidioides spp., which is estimated to cause ~15-30% of all community-acquired pneumonias in the highly endemic Greater Phoenix and

Valley Fever (VF), is a potentially lethal fungal pneumonia caused by Coccidioides spp., which is estimated to cause ~15-30% of all community-acquired pneumonias in the highly endemic Greater Phoenix and Tucson areas of Arizona. However, an accurate antigen-based diagnostic is still lacking. In order to identify protein and glycan antigen biomarkers of infection, I used a combination of genomics, proteomics and glycomics analyses to provide evidence of genus-specific proteins and glycosylations. The next goal was to determine if Coccidioides-specific glycans were present in biological samples from VF patients. Urine collected from 77 humans and 63 dogs were enriched for glycans and evaluated by mass spectrometry for Coccidioides-specific glycans and evaluated against a panel of normal donor urines, urines from patients infected with other fungi, and fungal cultures from closely related pneumonia-causing fungi. A combination of 6 glycan biomarkers was 100% sensitive and 100% specific in the diagnosis of human VF subjects, while only 3 glycan biomarkers were needed for 100% sensitivity and 100 specificity in the diagnosis of dog VF subject. Additionally, a blinded trial of 23 human urine samples was correctly able to classify urine samples with 93.3% sensitivity and 100% specificity. The results of this research provides evidence that Coccidioides genus-specific glycosylations have potential as antigens in diagnostic assays.

Contributors

Agent

Created

Date Created
  • 2019

157470-Thumbnail Image.png

Applying a Novel Integrated Persistent Feature to Understand Topographical Network Connectivity in Older Adults with Autism Spectrum Disorder

Description

Autism spectrum disorder (ASD) is a developmental neuropsychiatric condition with early childhood onset, thus most research has focused on characterizing brain function in young individuals. Little is understood about brain

Autism spectrum disorder (ASD) is a developmental neuropsychiatric condition with early childhood onset, thus most research has focused on characterizing brain function in young individuals. Little is understood about brain function differences in middle age and older adults with ASD, despite evidence of persistent and worsening cognitive symptoms. Functional Magnetic Resonance Imaging (MRI) in younger persons with ASD demonstrate that large-scale brain networks containing the prefrontal cortex are affected. A novel, threshold-selection-free graph theory metric is proposed as a more robust and sensitive method for tracking brain aging in ASD and is compared against five well-accepted graph theoretical analysis methods in older men with ASD and matched neurotypical (NT) participants. Participants were 27 men with ASD (52 +/- 8.4 years) and 21 NT men (49.7 +/- 6.5 years). Resting-state functional MRI (rs-fMRI) scans were collected for six minutes (repetition time=3s) with eyes closed. Data was preprocessed in SPM12, and Data Processing Assistant for Resting-State fMRI (DPARSF) was used to extract 116 regions-of-interest defined by the automated anatomical labeling (AAL) atlas. AAL regions were separated into six large-scale brain networks. This proposed metric is the slope of a monotonically decreasing convergence function (Integrated Persistent Feature, IPF; Slope of the IPF, SIP). Results were analyzed in SPSS using ANCOVA, with IQ as a covariate. A reduced SIP was in older men with ASD, compared to NT men, in the Default Mode Network [F(1,47)=6.48; p=0.02; 2=0.13] and Executive Network [F(1,47)=4.40; p=0.04; 2=0.09], a trend in the Fronto-Parietal Network [F(1,47)=3.36; p=0.07; 2=0.07]. There were no differences in the non-prefrontal networks (Sensory motor network, auditory network, and medial visual network). The only other graph theory metric to reach significance was network diameter in the Default Mode Network [F(1,47)=4.31; p=0.04; 2=0.09]; however, the effect size for the SIP was stronger. Modularity, Betti number, characteristic path length, and eigenvalue centrality were all non-significant. These results provide empirical evidence of decreased functional network integration in pre-frontal networks of older adults with ASD and propose a useful biomarker for tracking prognosis of aging adults with ASD to enable more informed treatment, support, and care methods for this growing population.

Contributors

Agent

Created

Date Created
  • 2019