Matching Items (5)
Filtering by

Clear all filters

152902-Thumbnail Image.png
Description
Accelerated life testing (ALT) is the process of subjecting a product to stress conditions (temperatures, voltage, pressure etc.) in excess of its normal operating levels to accelerate failures. Product failure typically results from multiple stresses acting on it simultaneously. Multi-stress factor ALTs are challenging as they increase the number of

Accelerated life testing (ALT) is the process of subjecting a product to stress conditions (temperatures, voltage, pressure etc.) in excess of its normal operating levels to accelerate failures. Product failure typically results from multiple stresses acting on it simultaneously. Multi-stress factor ALTs are challenging as they increase the number of experiments due to the stress factor-level combinations resulting from the increased number of factors. Chapter 2 provides an approach for designing ALT plans with multiple stresses utilizing Latin hypercube designs that reduces the simulation cost without loss of statistical efficiency. A comparison to full grid and large-sample approximation methods illustrates the approach computational cost gain and flexibility in determining optimal stress settings with less assumptions and more intuitive unit allocations.

Implicit in the design criteria of current ALT designs is the assumption that the form of the acceleration model is correct. This is unrealistic assumption in many real-world problems. Chapter 3 provides an approach for ALT optimum design for model discrimination. We utilize the Hellinger distance measure between predictive distributions. The optimal ALT plan at three stress levels was determined and its performance was compared to good compromise plan, best traditional plan and well-known 4:2:1 compromise test plans. In the case of linear versus quadratic ALT models, the proposed method increased the test plan's ability to distinguish among competing models and provided better guidance as to which model is appropriate for the experiment.

Chapter 4 extends the approach of Chapter 3 to ALT sequential model discrimination. An initial experiment is conducted to provide maximum possible information with respect to model discrimination. The follow-on experiment is planned by leveraging the most current information to allow for Bayesian model comparison through posterior model probability ratios. Results showed that performance of plan is adversely impacted by the amount of censoring in the data, in the case of linear vs. quadratic model form at three levels of constant stress, sequential testing can improve model recovery rate by approximately 8% when data is complete, but no apparent advantage in adopting sequential testing was found in the case of right-censored data when censoring is in excess of a certain amount.
ContributorsNasir, Ehab (Author) / Pan, Rong (Thesis advisor) / Runger, George C. (Committee member) / Gel, Esma (Committee member) / Kao, Ming-Hung (Committee member) / Montgomery, Douglas C. (Committee member) / Arizona State University (Publisher)
Created2014
154115-Thumbnail Image.png
Description
Functional or dynamic responses are prevalent in experiments in the fields of engineering, medicine, and the sciences, but proposals for optimal designs are still sparse for this type of response. Experiments with dynamic responses result in multiple responses taken over a spectrum variable, so the design matrix for a dynamic

Functional or dynamic responses are prevalent in experiments in the fields of engineering, medicine, and the sciences, but proposals for optimal designs are still sparse for this type of response. Experiments with dynamic responses result in multiple responses taken over a spectrum variable, so the design matrix for a dynamic response have more complicated structures. In the literature, the optimal design problem for some functional responses has been solved using genetic algorithm (GA) and approximate design methods. The goal of this dissertation is to develop fast computer algorithms for calculating exact D-optimal designs.



First, we demonstrated how the traditional exchange methods could be improved to generate a computationally efficient algorithm for finding G-optimal designs. The proposed two-stage algorithm, which is called the cCEA, uses a clustering-based approach to restrict the set of possible candidates for PEA, and then improves the G-efficiency using CEA.



The second major contribution of this dissertation is the development of fast algorithms for constructing D-optimal designs that determine the optimal sequence of stimuli in fMRI studies. The update formula for the determinant of the information matrix was improved by exploiting the sparseness of the information matrix, leading to faster computation times. The proposed algorithm outperforms genetic algorithm with respect to computational efficiency and D-efficiency.



The third contribution is a study of optimal experimental designs for more general functional response models. First, the B-spline system is proposed to be used as the non-parametric smoother of response function and an algorithm is developed to determine D-optimal sampling points of a spectrum variable. Second, we proposed a two-step algorithm for finding the optimal design for both sampling points and experimental settings. In the first step, the matrix of experimental settings is held fixed while the algorithm optimizes the determinant of the information matrix for a mixed effects model to find the optimal sampling times. In the second step, the optimal sampling times obtained from the first step is held fixed while the algorithm iterates on the information matrix to find the optimal experimental settings. The designs constructed by this approach yield superior performance over other designs found in literature.
ContributorsSaleh, Moein (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Runger, George C. (Committee member) / Kao, Ming-Hung (Committee member) / Arizona State University (Publisher)
Created2015
157274-Thumbnail Image.png
Description
Bayesian Additive Regression Trees (BART) is a non-parametric Bayesian model

that often outperforms other popular predictive models in terms of out-of-sample error. This thesis studies a modified version of BART called Accelerated Bayesian Additive Regression Trees (XBART). The study consists of simulation and real data experiments comparing XBART to other leading

Bayesian Additive Regression Trees (BART) is a non-parametric Bayesian model

that often outperforms other popular predictive models in terms of out-of-sample error. This thesis studies a modified version of BART called Accelerated Bayesian Additive Regression Trees (XBART). The study consists of simulation and real data experiments comparing XBART to other leading algorithms, including BART. The results show that XBART maintains BART’s predictive power while reducing its computation time. The thesis also describes the development of a Python package implementing XBART.
ContributorsYalov, Saar (Author) / Hahn, P. Richard (Thesis advisor) / McCulloch, Robert (Committee member) / Kao, Ming-Hung (Committee member) / Arizona State University (Publisher)
Created2019
191496-Thumbnail Image.png
Description
This dissertation centers on Bayesian Additive Regression Trees (BART) and Accelerated BART (XBART) and presents a series of models that tackle extrapolation, classification, and causal inference challenges. To improve extrapolation in tree-based models, I propose a method called local Gaussian Process (GP) that combines Gaussian process regression with trained BART

This dissertation centers on Bayesian Additive Regression Trees (BART) and Accelerated BART (XBART) and presents a series of models that tackle extrapolation, classification, and causal inference challenges. To improve extrapolation in tree-based models, I propose a method called local Gaussian Process (GP) that combines Gaussian process regression with trained BART trees. This allows for extrapolation based on the most relevant data points and covariate variables determined by the trees' structure. The local GP technique is extended to the Bayesian causal forest (BCF) models to address the positivity violation issue in causal inference. Additionally, I introduce the LongBet model to estimate time-varying, heterogeneous treatment effects in panel data. Furthermore, I present a Poisson-based model, with a modified likelihood for XBART for the multi-class classification problem.
ContributorsWang, Meijia (Author) / Hahn, Paul (Thesis advisor) / He, Jingyu (Committee member) / Lan, Shiwei (Committee member) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Arizona State University (Publisher)
Created2024
158850-Thumbnail Image.png
Description
Spatial regression is one of the central topics in spatial statistics. Based on the goals, interpretation or prediction, spatial regression models can be classified into two categories, linear mixed regression models and nonlinear regression models. This dissertation explored these models and their real world applications. New methods and models were

Spatial regression is one of the central topics in spatial statistics. Based on the goals, interpretation or prediction, spatial regression models can be classified into two categories, linear mixed regression models and nonlinear regression models. This dissertation explored these models and their real world applications. New methods and models were proposed to overcome the challenges in practice. There are three major parts in the dissertation.

In the first part, nonlinear regression models were embedded into a multistage workflow to predict the spatial abundance of reef fish species in the Gulf of Mexico. There were two challenges, zero-inflated data and out of sample prediction. The methods and models in the workflow could effectively handle the zero-inflated sampling data without strong assumptions. Three strategies were proposed to solve the out of sample prediction problem. The results and discussions showed that the nonlinear prediction had the advantages of high accuracy, low bias and well-performed in multi-resolution.

In the second part, a two-stage spatial regression model was proposed for analyzing soil carbon stock (SOC) data. In the first stage, there was a spatial linear mixed model that captured the linear and stationary effects. In the second stage, a generalized additive model was used to explain the nonlinear and nonstationary effects. The results illustrated that the two-stage model had good interpretability in understanding the effect of covariates, meanwhile, it kept high prediction accuracy which is competitive to the popular machine learning models, like, random forest, xgboost and support vector machine.

A new nonlinear regression model, Gaussian process BART (Bayesian additive regression tree), was proposed in the third part. Combining advantages in both BART and Gaussian process, the model could capture the nonlinear effects of both observed and latent covariates. To develop the model, first, the traditional BART was generalized to accommodate correlated errors. Then, the failure of likelihood based Markov chain Monte Carlo (MCMC) in parameter estimating was discussed. Based on the idea of analysis of variation, back comparing and tuning range, were proposed to tackle this failure. Finally, effectiveness of the new model was examined by experiments on both simulation and real data.
ContributorsLu, Xuetao (Author) / McCulloch, Robert (Thesis advisor) / Hahn, Paul (Committee member) / Lan, Shiwei (Committee member) / Zhou, Shuang (Committee member) / Saul, Steven (Committee member) / Arizona State University (Publisher)
Created2020