Matching Items (2)
Filtering by

Clear all filters

156725-Thumbnail Image.png
Description
In this dissertation a new wideband circular HIS is proposed. The circular periodicity made it possible to illuminate the surface with a cylindrical TEMz wave and; a novel technique is utilized to make it wideband. Two models are developed to analyze the

reflection characteristics of the proposed HIS.

The circularly symmetric high

In this dissertation a new wideband circular HIS is proposed. The circular periodicity made it possible to illuminate the surface with a cylindrical TEMz wave and; a novel technique is utilized to make it wideband. Two models are developed to analyze the

reflection characteristics of the proposed HIS.

The circularly symmetric high impedance surface is used as a ground plane for the design of a low-profile loop and spiral radiating elements. It is shown that a HIS with circular periodicity provides a wider operational bandwidth for curvilinear radiating elements such, such as loops and spirals, compared to canonical rectangular HISs.

It is also observed that, with the aid of a circular HIS ground plane the gain of a loop and a spiral increases compared to when a perfect magnetic conductor (PMC) or rectangular HIS is used as a ground plane. The circular HIS was fabricated and the loop and spiral elements were placed individually in close proximity to it.

Also, due to the growing demand for low-radar signature (RCS) antennas for advanced airborne vehicles, curved and flexible HIS ground planes, which meet both the aerodynamic and low RCS requirements, have recently become popular candidates within the antenna and microwave technology. This encouraged us, to propose a spherical HIS where a 2-D curvature is introduced to the previously designed flat HIS.

The major problem associated with spherical HIS is the impact of the curvature on its reflection properties. After characterization of the flat circular HIS, which is addressed in the first part of this dissertation, a spherical curvature is introduced to the flat circular HIS and its impact on the reflection properties was examined when it was illuminated with the same cylindrical TEMz wave. The same technique, as for the flat HIS ground plane, is utilized to make the spherical HIS wideband. A loop and spiral element were placed in the vicinity of the curved HIS and their performanceswere investigated. The HISs were also fabricated and measurements were conducted to verify the simulations. An excellent agreement was observed.
ContributorsAmiri, Mikal Askarian (Author) / Balanis, Constantine A (Thesis advisor) / Aberle, James T (Committee member) / Bakkaloglu, Bertan (Committee member) / Trichopoulos, Georgios C (Committee member) / Arizona State University (Publisher)
Created2018
155888-Thumbnail Image.png
Description
There is an ever-growing need for broadband conformal antennas to not only reduce the number of antennas utilized to cover a broad range of frequencies (VHF-UHF) but also to reduce visual and RF signatures associated with communication systems. In many applications antennas needs to be very close to low-impedance mediums

There is an ever-growing need for broadband conformal antennas to not only reduce the number of antennas utilized to cover a broad range of frequencies (VHF-UHF) but also to reduce visual and RF signatures associated with communication systems. In many applications antennas needs to be very close to low-impedance mediums or embedded inside low-impedance mediums. However, for conventional metal and dielectric antennas to operate efficiently in such environments either a very narrow bandwidth must be tolerated, or enough loss added to expand the bandwidth, or they must be placed one quarter of a wavelength above the conducting surface. The latter is not always possible since in the HF through low UHF bands, critical to Military and Security functions, this quarter-wavelength requirement would result in impractically large antennas.

Despite an error based on a false assumption in the 1950’s, which had severely underestimated the efficiency of magneto-dielectric antennas, recently demonstrated magnetic-antennas have been shown to exhibit extraordinary efficiency in conformal applications. Whereas conventional metal-and-dielectric antennas carrying radiating electric currents suffer a significant disadvantage when placed conformal to the conducting surface of a platform, because they induce opposing image currents in the surface, magnetic-antennas carrying magnetic radiating currents have no such limitation. Their magnetic currents produce co-linear image currents in electrically conducting surfaces.

However, the permeable antennas built to date have not yet attained the wide bandwidth expected because the magnetic-flux-channels carrying the wave have not been designed to guide the wave near the speed of light at all frequencies. Instead, they tend to lose the wave by a leaky fast-wave mechanism at low frequencies or they over-bind a slow-wave at high frequencies. In this dissertation, we have studied magnetic antennas in detail and presented the design approach and apparatus required to implement a flux-channel carrying the magnetic current wave near the speed of light over a very broad frequency range which also makes the design of a frequency independent antenna (spiral) possible. We will learn how to construct extremely thin conformal antennas, frequency-independent permeable antennas, and even micron-sized antennas that can be embedded inside the brain without damaging the tissue.
ContributorsYousefi, Tara (Author) / Diaz, Rodolfo E (Thesis advisor) / Cochran, Douglas (Committee member) / Goodnick, Stephen (Committee member) / Pan, George (Committee member) / Arizona State University (Publisher)
Created2017