Matching Items (2)
Filtering by

Clear all filters

156725-Thumbnail Image.png
Description
In this dissertation a new wideband circular HIS is proposed. The circular periodicity made it possible to illuminate the surface with a cylindrical TEMz wave and; a novel technique is utilized to make it wideband. Two models are developed to analyze the

reflection characteristics of the proposed HIS.

The circularly symmetric high

In this dissertation a new wideband circular HIS is proposed. The circular periodicity made it possible to illuminate the surface with a cylindrical TEMz wave and; a novel technique is utilized to make it wideband. Two models are developed to analyze the

reflection characteristics of the proposed HIS.

The circularly symmetric high impedance surface is used as a ground plane for the design of a low-profile loop and spiral radiating elements. It is shown that a HIS with circular periodicity provides a wider operational bandwidth for curvilinear radiating elements such, such as loops and spirals, compared to canonical rectangular HISs.

It is also observed that, with the aid of a circular HIS ground plane the gain of a loop and a spiral increases compared to when a perfect magnetic conductor (PMC) or rectangular HIS is used as a ground plane. The circular HIS was fabricated and the loop and spiral elements were placed individually in close proximity to it.

Also, due to the growing demand for low-radar signature (RCS) antennas for advanced airborne vehicles, curved and flexible HIS ground planes, which meet both the aerodynamic and low RCS requirements, have recently become popular candidates within the antenna and microwave technology. This encouraged us, to propose a spherical HIS where a 2-D curvature is introduced to the previously designed flat HIS.

The major problem associated with spherical HIS is the impact of the curvature on its reflection properties. After characterization of the flat circular HIS, which is addressed in the first part of this dissertation, a spherical curvature is introduced to the flat circular HIS and its impact on the reflection properties was examined when it was illuminated with the same cylindrical TEMz wave. The same technique, as for the flat HIS ground plane, is utilized to make the spherical HIS wideband. A loop and spiral element were placed in the vicinity of the curved HIS and their performanceswere investigated. The HISs were also fabricated and measurements were conducted to verify the simulations. An excellent agreement was observed.
ContributorsAmiri, Mikal Askarian (Author) / Balanis, Constantine A (Thesis advisor) / Aberle, James T (Committee member) / Bakkaloglu, Bertan (Committee member) / Trichopoulos, Georgios C (Committee member) / Arizona State University (Publisher)
Created2018
158576-Thumbnail Image.png
Description
Since the advent of High Impedance Surfaces (HISs) and metasurfaces, researchers

have proposed many low profile antenna configurations. HISs possess in-phase reflection, which reinforces the radiation, and enhances the directivity and matching bandwidth of radiating elements. Most of the proposed dipole and loop element designs that have used HISs as a

Since the advent of High Impedance Surfaces (HISs) and metasurfaces, researchers

have proposed many low profile antenna configurations. HISs possess in-phase reflection, which reinforces the radiation, and enhances the directivity and matching bandwidth of radiating elements. Most of the proposed dipole and loop element designs that have used HISs as a ground plane, have attained a maximum directivity of 8 dBi. While HISs are more attractive ground planes for low profile antennas, these HISs result in a low directivity as compared to PEC ground planes. Various studies have shown that Perfect Electric Conductor (PEC) ground planes are capable of achieving higher directivity, at the expense of matching efficiency, when the spacing

between the radiating element and the PEC ground plane is less than 0.25 lambda. To establish an efficient ground plane for low profile applications, PEC (Perfect Electric Conductor) and PMC (Perfect Magnetic Conductor) ground planes are examined in the vicinity of electric and magnetic radiating elements. The limitation of the two ground planes, in terms of radiation efficiency and the impedance matching, are discussed. Far-field analytical formulations are derived and the results are compared with full-wave EM simulations performed using the High-Frequency Structure Simulator (HFSS). Based on PEC and PMC designs, two engineered ground planes are proposed.

The designed ground planes depend on two metasurface properties; namely in-phase reflection and excitation of surface waves. Two ground plane geometries are considered. The first one is designed for a circular loop radiating element, which utilizes a

circular HIS ring deployed on a circular ground plane. The integration of the loop element with the circular HIS ground plane enhances the maximum directivity up to 10.5 dB with a 13% fractional bandwidth. The second ground plane is designed for a square loop radiating element. Unlike the first design, rectangular HIS patches are utilized to control the excitation of surface waves in the principal planes. The final design operates from 3.8 to 5 GHz (27% fractional bandwidth) with a stable broadside maximum realized gain up to 11.9 dBi. To verify the proposed designs, a prototype was fabricated and measurements were conducted. A good agreement between simulations and measurements was observed. Furthermore, multiple square ring elements are embedded within the periodic patches to form a surface wave planar antenna array. Linear and circular polarizations are proposed and compared to a conventional square ring array. The implementation of periodic patches results in a better matching bandwidth and higher broadside gain compared to a conventional array.
ContributorsAlharbi, Mohammed (Author) / Balanis, Constantine A (Thesis advisor) / Aberle, James T (Committee member) / Palais, Joseph (Committee member) / Trichopoulos, Georgios C (Committee member) / Arizona State University (Publisher)
Created2020