Matching Items (4)

151874-Thumbnail Image.png

Wind farm characterization and control using coherent Doppler lidar

Description

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.

Contributors

Agent

Created

Date Created
  • 2013

157757-Thumbnail Image.png

Software defined pulse-doppler radar for over-the-air applications: the joint radar-communications experiment

Description

In this paper, the Software Defined Radio (SDR) platform is considered for building a pseudo-monostatic, 100MHz Pulse-Doppler radar. The SDR platform has many benefits for experimental communications systems as it

In this paper, the Software Defined Radio (SDR) platform is considered for building a pseudo-monostatic, 100MHz Pulse-Doppler radar. The SDR platform has many benefits for experimental communications systems as it offers relatively cheap, parametrically dynamic, off-the-shelf access to the Radiofrequency (RF) spectrum. For this application, the Universal Software Radio Peripheral (USRP) X310 hardware package is utilized with GNURadio for interfacing to the device and Matlab for signal post- processing. Pulse doppler radar processing is used to ascertain the range and velocity of a target considered in simulation and in real, over-the-air (OTA) experiments. The USRP platform offers a scalable and dynamic hardware package that can, with relatively low overhead, be incorporated into other experimental systems. This radar system will be considered for implementation into existing over-the-air Joint Radar- Communications (JRC) spectrum sharing experiments. The JRC system considers a co-designed architecture in which a communications user and a radar user share the same spectral allocation. Where the two systems would traditionally consider one another a source of interference, the receiver is able to decode communications information and discern target information via pulse-doppler radar simultaneously.

Contributors

Agent

Created

Date Created
  • 2019

153299-Thumbnail Image.png

Short-term wind power forecasts using Doppler lidar

Description

With a ground-based Doppler lidar on the upwind side of a wind farm in the Tehachapi Pass of California, radial wind velocity measurements were collected for repeating sector sweeps, scanning

With a ground-based Doppler lidar on the upwind side of a wind farm in the Tehachapi Pass of California, radial wind velocity measurements were collected for repeating sector sweeps, scanning up to 10 kilometers away. This region consisted of complex terrain, with the scans made between mountains. The dataset was utilized for techniques being studied for short-term forecasting of wind power by correlating changes in energy content and of turbulence intensity by tracking spatial variance, in the wind ahead of a wind farm. A ramp event was also captured and its propagation was tracked.

Orthogonal horizontal wind vectors were retrieved from the radial velocity using a sector Velocity Azimuth Display method. Streamlines were plotted to determine the potential sites for a correlation of upstream wind speed with wind speed at downstream locations near the wind farm. A "virtual wind turbine" was "placed" in locations along the streamline by using the time-series velocity data at the location as the input to a modeled wind turbine, to determine the extractable energy content at that location. The relationship between this time-dependent energy content upstream and near the wind farm was studied. By correlating the energy content with each upstream location based on a time shift estimated according to advection at the mean wind speed, several fits were evaluated. A prediction of the downstream energy content was produced by shifting the power output in time and applying the best-fit function. This method made predictions of the power near the wind farm several minutes in advance. Predictions were also made up to an hour in advance for a large ramp event. The Magnitude Absolute Error and Standard Deviation are presented for the predictions based on each selected upstream location.

Contributors

Agent

Created

Date Created
  • 2014

152044-Thumbnail Image.png

Vital sign estimation through Doppler radar

Description

Doppler radar can be used to measure respiration and heart rate without contact and through obstacles. In this work, a Doppler radar architecture at 2.4 GHz and a new signal

Doppler radar can be used to measure respiration and heart rate without contact and through obstacles. In this work, a Doppler radar architecture at 2.4 GHz and a new signal processing algorithm to estimate the respiration and heart rate are presented. The received signal is dominated by the transceiver noise, LO phase noise and clutter which reduces the signal-to-noise ratio of the desired signal. The proposed architecture and algorithm are used to mitigate these issues and obtain an accurate estimate of the heart and respiration rate. Quadrature low-IF transceiver architecture is adopted to resolve null point problem as well as avoid 1/f noise and DC offset due to mixer-LO coupling. Adaptive clutter cancellation algorithm is used to enhance receiver sensitivity coupled with a novel Pattern Search in Noise Subspace (PSNS) algorithm is used to estimate respiration and heart rate. PSNS is a modified MUSIC algorithm which uses the phase noise to enhance Doppler shift detection. A prototype system was implemented using off-the-shelf TI and RFMD transceiver and tests were conduct with eight individuals. The measured results shows accurate estimate of the cardio pulmonary signals in low-SNR conditions and have been tested up to a distance of 6 meters.

Contributors

Agent

Created

Date Created
  • 2013