Matching Items (3)
Filtering by

Clear all filters

187829-Thumbnail Image.png
Description
Xylem conduits, a primary feature of most terrestrial plant taxa, deliver water to photosynthetic tissues and play a critical role in plant water relations and drought tolerance. Non-succulent woody taxa generally follow a universal rate of tip-to-base conduit widening such that hydraulic resistance remains constant throughout the plant stem. Giant

Xylem conduits, a primary feature of most terrestrial plant taxa, deliver water to photosynthetic tissues and play a critical role in plant water relations and drought tolerance. Non-succulent woody taxa generally follow a universal rate of tip-to-base conduit widening such that hydraulic resistance remains constant throughout the plant stem. Giant cacti inhabit arid regions throughout the Americas and thrive in water-limited environments by complimenting water-storing succulent tissues with resource-efficient Crassulacean Acid Metabolism. Considering these adaptations, the objectives of this study were threefold: 1) determine whether xylem conduits in columnar cacti follow universal scaling theory as observed in woody taxa; 2) evaluate whether xylem hydraulic diameter is inversely correlated with xylem vessel density; and 3) determine whether xylem double-wall thickness-to-span ratio and other hydraulic architectural traits are convergent among phylogenetically diverse cactus species. This thesis investigates the xylem anatomy of nine cactus species native to the Sonoran Desert of Arizona and Mexico, the tropical dry forests of southern Mexico, and the Alto Plano region of Argentina. Soft xylem tissues closest to the stem apex underwent a modified polyethylene glycol treatment to stabilize for sectioning with a sledge microtome. Across all species: hydraulic diameter followed a basipetal widening rate of 0.21 (p < 0.001), closely matching the universal rate of 0.20 for woody taxa; and xylem vessel density was inversely correlated with both length from stem apex (p < 0.001) and hydraulic diameter (p < 0.001). Double-wall thickness-to-span ratio had little to no significant correlation with either length from stem apex or hydraulic diameter. There was no significant difference in hydraulic architectural trait patterns between phylogenetically diverse species with various stem morphologies, nor was there a significant correlation between conduit widening rates and volume-to-surface-area ratios. This study demonstrates that giant cacti follow similar internal anatomical constraints as non-succulent woody taxa, yet stem succulence and water storage behavior in cacti remain separate from internal hydraulic architecture, allowing cacti to thrive in arid environments. Understanding how cacti cope with severe water limitations provides new insights on evolutionary constraints of stem succulents as they functionally diverged from other life forms.
ContributorsCaspeta, Ivanna (Author) / Hultine, Kevin (Thesis advisor) / Throop, Heather (Thesis advisor) / Hernandez, Tania (Committee member) / Arizona State University (Publisher)
Created2023
171922-Thumbnail Image.png
Description
The southwestern US will experience more frequent heat waves, prolonged droughts, and declining water supply. Riparian ecosystems are particularly at-risk under climate change predictions, but little is known about the thermal tolerance of plant species inhabiting these ecosystems. Populus fremontii, a pioneer and foundation tree species in riparian ecosystems throughout

The southwestern US will experience more frequent heat waves, prolonged droughts, and declining water supply. Riparian ecosystems are particularly at-risk under climate change predictions, but little is known about the thermal tolerance of plant species inhabiting these ecosystems. Populus fremontii, a pioneer and foundation tree species in riparian ecosystems throughout the southwest, is of concern given its importance in driving community structure and influencing ecosystem processes. This study compared leaf thermal tolerance across populations of P. fremontii to determine if local adaptation affects leaf thermal tolerance. I hypothesized that warm-adapted (low-elevation) populations would have larger leaf thermal tolerance thresholds, thermal safety margins, and thermal time constants than cool-adapted (high-elevation) populations. I expected warm-adapted populations to maintain lower maximum leaf temperatures due to local adaptation affecting leaf thermal regulation. Using a common garden at the warm edge of this species’ range, I measured leaf thermal tolerance metrics in eight populations spanning a 1,200 m elevational gradient. Data collection occurred in May, during mild air temperatures, and in August, during high air temperatures. The first two metrics were leaf thermal tolerance thresholds. The critical temperature (Tcrit) is the temperature at which the electron transport capacity of PSII is disrupted. T50 is the temperature at which the electron transport capacity decreases to 50%. The next metric was thermal safety margins (TSMs), which reflect a leaf’s vulnerability to reaching thermal tolerance thresholds. TSMs are the difference between either Tcrit or T50 and an experienced environmental variable such as leaf or air temperature. The last metric was the thermal time constant (?), which is a trait that represents how quickly leaf temperatures respond to changes in air temperatures. Tcrit, T50, and ? were not correlated with elevation regardless of season, suggesting that acclimation or phenotypic plasticity is affecting these metrics. Conversely, TSMs using maximum leaf temperature were negatively correlated with elevation in August because warm-adapted populations maintained lower maximum leaf temperatures. These findings suggest that warm-adapted populations are locally adapted to maintain cooler leaf temperatures, which is critical for their future survival since they do not maintain higher leaf thermal tolerance thresholds than cool-adapted populations.
ContributorsMoran, Madeline (Author) / Hultine, Kevin (Thesis advisor) / Throop, Heather (Thesis advisor) / Butterfield, Bradley (Committee member) / Arizona State University (Publisher)
Created2022
158082-Thumbnail Image.png
Description
Climate change is increasing global surface temperatures, intensifying droughts and increasing rainfall variation, particularly in drylands. Understanding how dryland plant communities respond to climate change-induced rainfall changes is crucial for implementing effective conservation strategies. Concurrent with climate change impacts on drylands is woody encroachment: an increase in abundance of woody

Climate change is increasing global surface temperatures, intensifying droughts and increasing rainfall variation, particularly in drylands. Understanding how dryland plant communities respond to climate change-induced rainfall changes is crucial for implementing effective conservation strategies. Concurrent with climate change impacts on drylands is woody encroachment: an increase in abundance of woody plant species in areas formerly dominated by grasslands or savannahs. For example, the woody plant, Prosopis velutina (velvet mesquite), has encroached into grasslands regionally over the past century. From an agricultural perspective, P. velutina is an invasive weed that hinders cattle forage. Understanding how P. velutina will respond to climate change-induced rainfall changes can be useful for management and conservation efforts. Prosopis velutina was used to answer the following question: Is there a significant interactive effect of mean soil water moisture content and pulse frequency on woody seedling survival and growth in dryland ecosystems? There were 256 P. velutina seedlings sourced from the Santa Rita Experimental Range in southern Arizona grown under four watering treatments where mean and pulse frequency were manipulated over two months. Data were collected on mortality, stem height, number of leaves, instantaneous gas exchange, chlorophyll fluorescence, biomass, and the leaf carbon to nitrogen (C:N) ratio. Mortality was low across treatments. Pulse frequency had less impact across response variables than the mean amount of water received. This may indicate that P. velutina seedlings are relatively insensitive to rainfall timing and are more responsive to rainfall amount. Prosopis velutina in the low mean soil moisture treatments lost a majority of their leaves and had greater biomass allocation to roots. Prosopis velutina’s ability to survive in low soil moisture conditions and invest in root biomass can allow it to persist as drylands are further affected by climate change. Prosopis velutina could benefit ecosystems where native plants are at risk due to rainfall variation if P. velutina occupies a similar niche space. Due to conflicting viewpoints of P. velutina as an invasive species, it’s important to examine P. velutina from both agricultural and conservation perspectives. Further analysis on the benefits to P. velutina in these ecosystems is recommended.
ContributorsDavis, Ashley R. (Author) / Throop, Heather (Thesis advisor) / Hultine, Kevin (Committee member) / Sala, Osvaldo (Committee member) / Arizona State University (Publisher)
Created2020