Matching Items (3)

152536-Thumbnail Image.png

Human-robot cooperation: communication and leader-follower dynamics

Description

As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be

As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be seen as cooperating to complete a task with some object of interest. Often these applications are in unstructured environments where many paths can accomplish the goal. This creates a need for the ability to communicate a preferred direction of motion between both participants in order to move in coordinated way. This communication method should be bidirectional to be able to fully utilize both the robot and human capabilities. Moreover, often in cooperative tasks between two humans, one human will operate as the leader of the task and the other as the follower. These roles may switch during the task as needed. The need for communication extends into this area of leader-follower switching. Furthermore, not only is there a need to communicate the desire to switch roles but also to control this switching process. Impedance control has been used as a way of dealing with some of the complexities of pHRI. For this investigation, it was examined if impedance control can be utilized as a way of communicating a preferred direction between humans and robots. The first set of experiments tested to see if a human could detect a preferred direction of a robot by grasping and moving an object coupled to the robot. The second set tested the reverse case if the robot could detect the preferred direction of the human. The ability to detect the preferred direction was shown to be up to 99% effective. Using these results, a control method to allow a human and robot to switch leader and follower roles during a cooperative task was implemented and tested. This method proved successful 84% of the time. This control method was refined using adaptive control resulting in lower interaction forces and a success rate of 95%.

Contributors

Agent

Created

Date Created
2014

151787-Thumbnail Image.png

EMG-based robot control interfaces: beyond decoding

Description

Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot

Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation data sets, while the parameters of the decoding function are specific for each subject. In this thesis we propose a new methodology that doesn't require training and is not user-specific. The main idea is to supplement the decoding functional error with the human ability to learn inverse model of an arbitrary mapping function. We have shown that the subjects gradually learned the control strategy and their learning rates improved. We also worked on identifying an optimized control scheme that would be even more effective and easy to learn for the subjects. Optimization was done by taking into account that muscles act in synergies while performing a motion task. The low-dimensional representation of the neural activity was used to control a two-dimensional task. Results showed that in the case of reduced dimensionality mapping, the subjects were able to learn to control the device in a slower pace, however they were able to reach and retain the same level of controllability. To summarize, we were able to build an EMG-based controller for robot devices that would work for any subject, without any training or decoding function, suggesting human-embedded controllers for robotic devices.

Contributors

Agent

Created

Date Created
2013

155363-Thumbnail Image.png

Scalable control strategies and a customizable swarm robotic platform for boundary coverage and collective transport tasks

Description

Swarms of low-cost, autonomous robots can potentially be used to collectively perform tasks over large domains and long time scales. The design of decentralized, scalable swarm control strategies will enable the development of robotic systems that can execute such tasks

Swarms of low-cost, autonomous robots can potentially be used to collectively perform tasks over large domains and long time scales. The design of decentralized, scalable swarm control strategies will enable the development of robotic systems that can execute such tasks with a high degree of parallelism and redundancy, enabling effective operation even in the presence of unknown environmental factors and individual robot failures. Social insect colonies provide a rich source of inspiration for these types of control approaches, since they can perform complex collective tasks under a range of conditions. To validate swarm robotic control strategies, experimental testbeds with large numbers of robots are required; however, existing low-cost robots are specialized and can lack the necessary sensing, navigation, control, and manipulation capabilities.

To address these challenges, this thesis presents a formal approach to designing biologically-inspired swarm control strategies for spatially-confined coverage and payload transport tasks, as well as a novel low-cost, customizable robotic platform for testing swarm control approaches. Stochastic control strategies are developed that provably allocate a swarm of robots around the boundaries of multiple regions of interest or payloads to be transported. These strategies account for spatially-dependent effects on the robots' physical distribution and are largely robust to environmental variations. In addition, a control approach based on reinforcement learning is presented for collective payload towing that accommodates robots with heterogeneous maximum speeds. For both types of collective transport tasks, rigorous approaches are developed to identify and translate observed group retrieval behaviors in Novomessor cockerelli ants to swarm robotic control strategies. These strategies can replicate features of ant transport and inherit its properties of robustness to different environments and to varying team compositions. The approaches incorporate dynamical models of the swarm that are amenable to analysis and control techniques, and therefore provide theoretical guarantees on the system's performance. Implementation of these strategies on robotic swarms offers a way for biologists to test hypotheses about the individual-level mechanisms that drive collective behaviors. Finally, this thesis describes Pheeno, a new swarm robotic platform with a three degree-of-freedom manipulator arm, and describes its use in validating a variety of swarm control strategies.

Contributors

Agent

Created

Date Created
2017