Matching Items (2)

152336-Thumbnail Image.png

Frequency response characteristics of respiratory flow-meters

Description

Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process.

Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to determine the speed of the plane. A clinical example would be that the flow of a patient's breath which could help determine the state of the patient's lungs. This project is focused on the flow-meter that are used for airflow measurement in human lungs. In order to do these measurements, resistive-type flow-meters are commonly used in respiratory measurement systems. This method consists of passing the respiratory flow through a fluid resistive component, while measuring the resulting pressure drop, which is linearly related to volumetric flow rate. These types of flow-meters typically have a low frequency response but are adequate for most applications, including spirometry and respiration monitoring. In the case of lung parameter estimation methods, such as the Quick Obstruction Method, it becomes important to have a higher frequency response in the flow-meter so that the high frequency components in the flow are measurable. The following three types of flow-meters were: a. Capillary type b. Screen Pneumotach type c. Square Edge orifice type To measure the frequency response, a sinusoidal flow is generated with a small speaker and passed through the flow-meter that is connected to a large, rigid container. True flow is proportional to the derivative of the pressure inside the container. True flow is then compared with the measured flow, which is proportional to the pressure drop across the flow-meter. In order to do the characterization, two LabVIEW data acquisition programs have been developed, one for transducer calibration, and another one that records flow and pressure data for frequency response testing of the flow-meter. In addition, a model that explains the behavior exhibited by the flow-meter has been proposed and simulated. This model contains a fluid resistor and inductor in series. The final step in this project was to approximate the frequency response data to the developed model expressed as a transfer function.

Contributors

Agent

Created

Date Created
  • 2013

151764-Thumbnail Image.png

Pressure based spirometry: mobile spirometry using a pressure transducer

Description

Spirometry is a type of pulmonary function test that measures the amount of air volume and the speed of air flow from a patient's breath in order to assess lung

Spirometry is a type of pulmonary function test that measures the amount of air volume and the speed of air flow from a patient's breath in order to assess lung function. The goal of this project is to develop and validate a mobile spirometer technology based on a differential pressure sensor. The findings in this paper are used in a larger project that combines the features of a capnography device and a spirometer into a single mobile health unit known as the capno-spirometer. The following paper discusses the methods, experiments, and prototypes that were developed and tested in order to create a robust and accurate technology for all of the spirometry functions within the capno-spirometer. The differential pressure sensor is set up with one inlet measuring the pressure inside the spirometer tubing and the other inlet measuring the ambient pressure of the environment. The inlet measuring the inside of the tubing is very sensitive to its orientation and position with respect to the path of the air flow. It is found that taking a measurement from the center of the flow is 50% better than from the side wall. The sensor inlet is optimized at 37 mm from the mouthpiece inlet. The unit is calibrated by relating the maximum pressure sensor voltage signal to the peak expiratory flow rate (PEF) taken during a series of spirometry tests. In conclusion, this relationship is best represented as a quadratic function and a calibration equation is computed to provide a flow rate given a voltage change. The flow rates are used to calculate the four main spirometry parameters: PEF, FVC, FEV1, and FER. These methods are then referenced with the results from a commercial spirometer for validation. After validation, the pressure-based spirometry technology is proven to be both robust and accurate.

Contributors

Agent

Created

Date Created
  • 2013