Matching Items (2)
151700-Thumbnail Image.png
Description
Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance

Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance of two velocity estimation schemes used in Doppler processing systems, namely, directional velocity estimation (DVE) and conventional velocity estimation (CVE). We find that DVE provides better estimation performance and is the only functioning method when the beam to flow angle is large. Unfortunately, DVE is computationally expensive and also requires divisions and square root operations that are hard to implement. We propose two approximation techniques to replace these computations. The simulation results on cyst images show that the proposed approximations do not affect the estimation performance. We also study backend processing which includes envelope detection, log compression and scan conversion. Three different envelope detection methods are compared. Among them, FIR based Hilbert Transform is considered the best choice when phase information is not needed, while quadrature demodulation is a better choice if phase information is necessary. Bilinear and Gaussian interpolation are considered for scan conversion. Through simulations of a cyst image, we show that bilinear interpolation provides comparable contrast-to-noise ratio (CNR) performance with Gaussian interpolation and has lower computational complexity. Thus, bilinear interpolation is chosen for our system.
ContributorsWei, Siyuan (Author) / Chakrabarti, Chaitali (Thesis advisor) / Frakes, David (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2013
153251-Thumbnail Image.png
Description
Objective: Examine cardiovascular response to OMT via central and peripheral measurements. Methods: Central and peripheral cardiovascular signals of asymptomatic human subjects were monitored during a procedure with alternating rest and active phases. Active phases included systemic perturbations and application of controlled vertebral pressure (OMT) by an experienced osteopathic physician. Pulse

Objective: Examine cardiovascular response to OMT via central and peripheral measurements. Methods: Central and peripheral cardiovascular signals of asymptomatic human subjects were monitored during a procedure with alternating rest and active phases. Active phases included systemic perturbations and application of controlled vertebral pressure (OMT) by an experienced osteopathic physician. Pulse plethysmograph and laser Doppler flow sensors measured peripheral flow from index and middle fingers bilaterally. A three-lead EKG monitored cardiac activity. The biosignals were recorded continuously, in real time, and analyzed in time and frequency domains. Results from the control group (n=11), without OMT, and active group (n=16), with OMT, were compared. Peripheral (n=5) and central responders (n=6), subsets of the active group showing stronger peripheral or central response, were examined. In an additional effort, a modified clinical device recorded spectral Doppler ultrasound signals of the radial and dorsalis pedis arteries of clinically asymptomatic human subjects. Controlled physiologic provocations (limb occlusion and elevation), were performed. Time domain and spectral analyses were completed. Results: In the human subject study, the time wave characteristics and spectral analysis resulted in similar trends. Peripheral blood flow attenuated in the control group over time, while it was maintained in the active group, and increased specifically during OMT in the responder groups. Heart rate remained around 65 BPM in the control group, fluctuated between 64-68 BPM in the active group, and dropped 4 and 3 BPM in the peripheral and central responder groups, respectively. The effect in the OMT group was statistically significant compared to no-OMT, however, was not statistically significant within-groups. For the preliminary spectral ultrasound Doppler study, segmental flow was successfully monitored. A prototype "Quick Assessment" tool was developed, providing instant post-processing results for clinical use. Conclusions: OMT along the vertebral column may influence autonomic processes that regulate heart rate and peripheral vascular flow.
ContributorsPedapati, Chandhana (Author) / Muthuswamy, Jitendra (Thesis advisor) / Makin, Inder (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2014