Matching Items (7)
151692-Thumbnail Image.png
Description
A new method for generating artificial fingerprints is presented. Due to their uniqueness and durability, fingerprints are invaluable tools for identification for law enforcement and other purposes. Large databases of varied, realistic artificial fingerprints are needed to aid in the development and evaluation of automated systems for criminal or biometric

A new method for generating artificial fingerprints is presented. Due to their uniqueness and durability, fingerprints are invaluable tools for identification for law enforcement and other purposes. Large databases of varied, realistic artificial fingerprints are needed to aid in the development and evaluation of automated systems for criminal or biometric identification. Further, an effective method for simulating fingerprints may provide insight into the biological processes underlying print formation. However, previous attempts at simulating prints have been unsatisfactory. We approach the problem of creating artificial prints through a pattern formation model. We demonstrate how it is possible to generate distinctive patterns that strongly resemble real fingerprints via a system of partial differential equations with a suitable domain and initial conditions.
ContributorsColtin, Kevin (Author) / Armbruster, Hans D (Thesis advisor) / Platte, Rodrigo B (Committee member) / Welfert, Bruno D (Committee member) / Arizona State University (Publisher)
Created2013
153297-Thumbnail Image.png
Description
This thesis considers two problems in the control of robotic swarms. Firstly, it addresses a trajectory planning and task allocation problem for a swarm of resource-constrained robots that cannot localize or communicate with each other and that exhibit stochasticity in their motion and task switching policies. We model the population

This thesis considers two problems in the control of robotic swarms. Firstly, it addresses a trajectory planning and task allocation problem for a swarm of resource-constrained robots that cannot localize or communicate with each other and that exhibit stochasticity in their motion and task switching policies. We model the population dynamics of the robotic swarm as a set of advection-diffusion- reaction (ADR) partial differential equations (PDEs).

Specifically, we consider a linear parabolic PDE model that is bilinear in the robots' velocity and task-switching rates. These parameters constitute a set of time-dependent control variables that can be optimized and transmitted to the robots prior to their deployment or broadcasted in real time. The planning and allocation problem can then be formulated as a PDE-constrained optimization problem, which we solve using techniques from optimal control. Simulations of a commercial pollination scenario validate the ability of our control approach to drive a robotic swarm to achieve predefined spatial distributions of activity over a closed domain, which may contain obstacles. Secondly, we consider a mapping problem wherein a robotic swarm is deployed over a closed domain and it is necessary to reconstruct the unknown spatial distribution of a feature of interest. The ADR-based primitives result in a coefficient identification problem for the corresponding system of PDEs. To deal with the inherent ill-posedness of the problem, we frame it as an optimization problem. We validate our approach through simulations and show that reconstruction of the spatially-dependent coefficient can be achieved with considerable accuracy using temporal information alone.
ContributorsElamvazhuthi, Karthik (Author) / Berman, Spring Melody (Thesis advisor) / Peet, Matthew Monnig (Committee member) / Mittelmann, Hans (Committee member) / Arizona State University (Publisher)
Created2014
154525-Thumbnail Image.png
Description
In order to verify the dispersive nature of transverse displacement in a beam, a deep understanding of the governing partial differential equation is developed. Using the finite element method and Newmark’s method, along with Fourier transforms and other methods, the aim is to obtain consistent results across each numerical technique.

In order to verify the dispersive nature of transverse displacement in a beam, a deep understanding of the governing partial differential equation is developed. Using the finite element method and Newmark’s method, along with Fourier transforms and other methods, the aim is to obtain consistent results across each numerical technique. An analytical solution is also analyzed for the Euler-Bernoulli beam in order to gain confidence in the numerical techniques when used for more advance beam theories that do not have a known analytical solution. Three different beam theories are analyzed in this report: The Euler-Bernoulli beam theory, Rayleigh beam theory and Timoshenko beam theory. A comparison of the results show the difference between each theory and the advantages of using a more advanced beam theory for higher frequency vibrations.
ContributorsTschetter, Ryan William (Author) / Hjelmstad, Keith D. (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2016
154785-Thumbnail Image.png
Description
A computational framework based on convex optimization is presented for stability analysis of systems described by Partial Differential Equations (PDEs). Specifically, two forms of linear PDEs with spatially distributed polynomial coefficients are considered.

The first class includes linear coupled PDEs with one spatial variable. Parabolic, elliptic or hyperbolic PDEs with

A computational framework based on convex optimization is presented for stability analysis of systems described by Partial Differential Equations (PDEs). Specifically, two forms of linear PDEs with spatially distributed polynomial coefficients are considered.

The first class includes linear coupled PDEs with one spatial variable. Parabolic, elliptic or hyperbolic PDEs with Dirichlet, Neumann, Robin or mixed boundary conditions can be reformulated in order to be used by the framework. As an example, the reformulation is presented for systems governed by Schr¨odinger equation, parabolic type, relativistic heat conduction PDE and acoustic wave equation, hyperbolic types. The second form of PDEs of interest are scalar-valued with two spatial variables. An extra spatial variable allows consideration of problems such as local stability of fluid flows in channels and dynamics of population over two dimensional domains.

The approach does not involve discretization and is based on using Sum-of-Squares (SOS) polynomials and positive semi-definite matrices to parameterize operators which are positive on function spaces. Applying the parameterization to construct Lyapunov functionals with negative derivatives allows to express stability conditions as a set of LinearMatrix Inequalities (LMIs). The MATLAB package SOSTOOLS was used to construct the LMIs. The resultant LMIs then can be solved using existent Semi-Definite Programming (SDP) solvers such as SeDuMi or MOSEK. Moreover, the proposed approach allows to calculate bounds on the rate of decay of the solution norm.

The methodology is tested using several numerical examples and compared with the results obtained from simulation using standard methods of numerical discretization and analytic solutions.
ContributorsMeyer, Evgeny (Author) / Peet, Matthew (Thesis advisor) / Berman, Spring (Committee member) / Rivera, Daniel (Committee member) / Arizona State University (Publisher)
Created2016
154804-Thumbnail Image.png
Description
Divergence-free vector field interpolants properties are explored on uniform and scattered nodes, and also their application to fluid flow problems. These interpolants may be applied to physical problems that require the approximant to have zero divergence, such as the velocity field in the incompressible Navier-Stokes equations and the magnetic and

Divergence-free vector field interpolants properties are explored on uniform and scattered nodes, and also their application to fluid flow problems. These interpolants may be applied to physical problems that require the approximant to have zero divergence, such as the velocity field in the incompressible Navier-Stokes equations and the magnetic and electric fields in the Maxwell's equations. In addition, the methods studied here are meshfree, and are suitable for problems defined on complex domains, where mesh generation is computationally expensive or inaccurate, or for problems where the data is only available at scattered locations.

The contributions of this work include a detailed comparison between standard and divergence-free radial basis approximations, a study of the Lebesgue constants for divergence-free approximations and their dependence on node placement, and an investigation of the flat limit of divergence-free interpolants. Finally, numerical solvers for the incompressible Navier-Stokes equations in primitive variables are implemented using discretizations based on traditional and divergence-free kernels. The numerical results are compared to reference solutions obtained with a spectral

method.
ContributorsAraujo Mitrano, Arthur (Author) / Platte, Rodrigo (Thesis advisor) / Wright, Grady (Committee member) / Welfert, Bruno (Committee member) / Gelb, Anne (Committee member) / Renaut, Rosemary (Committee member) / Arizona State University (Publisher)
Created2016
154838-Thumbnail Image.png
Description
Cancer is a major health problem in the world today and is expected to become an even larger one in the future. Although cancer therapy has improved for many cancers in the last several decades, there is much room for further improvement. Mathematical modeling has the advantage of being able

Cancer is a major health problem in the world today and is expected to become an even larger one in the future. Although cancer therapy has improved for many cancers in the last several decades, there is much room for further improvement. Mathematical modeling has the advantage of being able to test many theoretical therapies without having to perform clinical trials and experiments. Mathematical oncology will continue to be an important tool in the future regarding cancer therapies and management.

This dissertation is structured as a growing tumor. Chapters 2 and 3 consider spheroid models. These models are adept at describing 'early-time' tumors, before the tumor needs to co-opt blood vessels to continue sustained growth. I consider two partial differential equation (PDE) models for spheroid growth of glioblastoma. I compare these models to in vitro experimental data for glioblastoma tumor cell lines and other proposed models. Further, I investigate the conditions under which traveling wave solutions exist and confirm numerically.

As a tumor grows, it can no longer be approximated by a spheroid, and it becomes necessary to use in vivo data and more sophisticated modeling to model the growth and diffusion. In Chapter 4, I explore experimental data and computational models for describing growth and diffusion of glioblastoma in murine brains. I discuss not only how the data was obtained, but how the 3D brain geometry is created from Magnetic Resonance (MR) images. A 3D finite-difference code is used to model tumor growth using a basic reaction-diffusion equation. I formulate and test hypotheses as to why there are large differences between the final tumor sizes between the mice.

Once a tumor has reached a detectable size, it is diagnosed, and treatment begins. Chapter 5 considers modeling the treatment of prostate cancer. I consider a joint model with hormonal therapy as well as immunotherapy. I consider a timing study to determine whether changing the vaccine timing has any effect on the outcome of the patient. In addition, I perform basic analysis on the six-dimensional ordinary differential equation (ODE). I also consider the limiting case, and perform a full global analysis.
ContributorsRutter, Erica Marie (Author) / Kuang, Yang (Thesis advisor) / Kostelich, Eric J (Thesis advisor) / Frakes, David (Committee member) / Gardner, Carl (Committee member) / Jackiewicz, Zdzislaw (Committee member) / Arizona State University (Publisher)
Created2016
157578-Thumbnail Image.png
Description
Numerous works have addressed the control of multi-robot systems for coverage, mapping, navigation, and task allocation problems. In addition to classical microscopic approaches to multi-robot problems, which model the actions and decisions of individual robots, lately, there has been a focus on macroscopic or Eulerian approaches. In these approaches, the

Numerous works have addressed the control of multi-robot systems for coverage, mapping, navigation, and task allocation problems. In addition to classical microscopic approaches to multi-robot problems, which model the actions and decisions of individual robots, lately, there has been a focus on macroscopic or Eulerian approaches. In these approaches, the population of robots is represented as a continuum that evolves according to a mean-field model, which is directly designed such that the corresponding robot control policies produce target collective behaviours.



This dissertation presents a control-theoretic analysis of three types of mean-field models proposed in the literature for modelling and control of large-scale multi-agent systems, including robotic swarms. These mean-field models are Kolmogorov forward equations of stochastic processes, and their analysis is motivated by the fact that as the number of agents tends to infinity, the empirical measure associated with the agents converges to the solution of these models. Hence, the problem of transporting a swarm of agents from one distribution to another can be posed as a control problem for the forward equation of the process that determines the time evolution of the swarm density.



First, this thesis considers the case in which the agents' states evolve on a finite state space according to a continuous-time Markov chain (CTMC), and the forward equation is an ordinary differential equation (ODE). Defining the agents' task transition rates as the control parameters, the finite-time controllability, asymptotic controllability, and stabilization of the forward equation are investigated. Second, the controllability and stabilization problem for systems of advection-diffusion-reaction partial differential equations (PDEs) is studied in the case where the control parameters include the agents' velocity as well as transition rates. Third, this thesis considers a controllability and optimal control problem for the forward equation in the more general case where the agent dynamics are given by a nonlinear discrete-time control system. Beyond these theoretical results, this thesis also considers numerical optimal transport for control-affine systems. It is shown that finite-volume approximations of the associated PDEs lead to well-posed transport problems on graphs as long as the control system is controllable everywhere.
ContributorsElamvazhuthi, Karthik (Author) / Berman, Spring Melody (Thesis advisor) / Kawski, Matthias (Committee member) / Kuiper, Hendrik (Committee member) / Mignolet, Marc (Committee member) / Peet, Matthew (Committee member) / Arizona State University (Publisher)
Created2019