Matching Items (3)
151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
156919-Thumbnail Image.png
Description
Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today,

Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today, optical flow fields are utilized to solve problems in various areas such as object detection and tracking, interpolation, visual odometry, etc. In this dissertation, three problems from different areas of computer vision and the solutions that make use of modified optical flow methods are explained.

The contributions of this dissertation are approaches and frameworks that introduce i) a new optical flow-based interpolation method to achieve minimally divergent velocimetry data, ii) a framework that improves the accuracy of change detection algorithms in synthetic aperture radar (SAR) images, and iii) a set of new methods to integrate Proton Magnetic Resonance Spectroscopy (1HMRSI) data into threedimensional (3D) neuronavigation systems for tumor biopsies.

In the first application an optical flow-based approach for the interpolation of minimally divergent velocimetry data is proposed. The velocimetry data of incompressible fluids contain signals that describe the flow velocity. The approach uses the additional flow velocity information to guide the interpolation process towards reduced divergence in the interpolated data.

In the second application a framework that mainly consists of optical flow methods and other image processing and computer vision techniques to improve object extraction from synthetic aperture radar images is proposed. The proposed framework is used for distinguishing between actual motion and detected motion due to misregistration in SAR image sets and it can lead to more accurate and meaningful change detection and improve object extraction from a SAR datasets.

In the third application a set of new methods that aim to improve upon the current state-of-the-art in neuronavigation through the use of detailed three-dimensional (3D) 1H-MRSI data are proposed. The result is a progressive form of online MRSI-guided neuronavigation that is demonstrated through phantom validation and clinical application.
ContributorsKanberoglu, Berkay (Author) / Frakes, David (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2018
156894-Thumbnail Image.png
Description
Medical ultrasound imaging is widely used today because of it being non-invasive and cost-effective. Flow estimation helps in accurate diagnosis of vascular diseases and adds an important dimension to medical ultrasound imaging. Traditionally flow estimation is done using Doppler-based methods which only estimate velocity in the beam direction. Thus

Medical ultrasound imaging is widely used today because of it being non-invasive and cost-effective. Flow estimation helps in accurate diagnosis of vascular diseases and adds an important dimension to medical ultrasound imaging. Traditionally flow estimation is done using Doppler-based methods which only estimate velocity in the beam direction. Thus when blood vessels are close to being orthogonal to the beam direction, there are large errors in the estimation results. In this dissertation, a low cost blood flow estimation method that does not have the angle dependency of Doppler-based methods, is presented.

First, a velocity estimator based on speckle tracking and synthetic lateral phase is proposed for clutter-free blood flow.

Speckle tracking is based on kernel matching and does not have any angle dependency. While velocity estimation in axial dimension is accurate, lateral velocity estimation is challenging due to reduced resolution and lack of phase information. This work presents a two tiered method which estimates the pixel level movement using sum-of-absolute difference, and then estimates the sub-pixel level using synthetic phase information in the lateral dimension. Such a method achieves highly accurate velocity estimation with reduced complexity compared to a cross correlation based method. The average bias of the proposed estimation method is less than 2% for plug flow and less than 7% for parabolic flow.

Blood is always accompanied by clutter which originates from vessel wall and surrounding tissues. As magnitude of the blood signal is usually 40-60 dB lower than magnitude of the clutter signal, clutter filtering is necessary before blood flow estimation. Clutter filters utilize the high magnitude and low frequency features of clutter signal to effectively remove them from the compound (blood + clutter) signal. Instead of low complexity FIR filter or high complexity SVD-based filters, here a power/subspace iteration based method is proposed for clutter filtering. Excellent clutter filtering performance is achieved for both slow and fast moving clutters with lower complexity compared to SVD-based filters. For instance, use of the proposed method results in the bias being less than 8% and standard deviation being less than 12% for fast moving clutter when the beam-to-flow-angle is $90^o$.

Third, a flow rate estimation method based on kernel power weighting is proposed. As the velocity estimator is a kernel-based method, the estimation accuracy degrades near the vessel boundary. In order to account for kernels that are not fully inside the vessel, fractional weights are given to these kernels based on their signal power. The proposed method achieves excellent flow rate estimation results with less than 8% bias for both slow and fast moving clutters.

The performance of the velocity estimator is also evaluated for challenging models. A 2D version of our two-tiered method is able to accurately estimate velocity vectors in a spinning disk as well as in a carotid bifurcation model, both of which are part of the synthetic aperture vector flow imaging (SA-VFI) challenge of 2018. In fact, the proposed method ranked 3rd in the challenge for testing dataset with carotid bifurcation. The flow estimation method is also evaluated for blood flow in vessels with stenosis. Simulation results show that the proposed method is able to estimate the flow rate with less than 9% bias.
ContributorsWei, Siyuan (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Ogras, Umit Y. (Committee member) / Wenisch, Thomas F. (Committee member) / Arizona State University (Publisher)
Created2018