Matching Items (3)
Filtering by

Clear all filters

151483-Thumbnail Image.png
Description
The ability of Neandertals to cope with the oscillating climate of the late Pleistocene and the extent to which these climate changes affected local Neandertal habitats remain unanswered anthropological topics of considerable scientific interest. Understanding the impact of climatic instability on Neandertals is critical for reconstructing the behaviors of our

The ability of Neandertals to cope with the oscillating climate of the late Pleistocene and the extent to which these climate changes affected local Neandertal habitats remain unanswered anthropological topics of considerable scientific interest. Understanding the impact of climatic instability on Neandertals is critical for reconstructing the behaviors of our closest fossil relatives and possibly identifying factors that contributed to their extinction. My work aimed to test the hypotheses that 1) cold climates stressed Neandertal populations, and 2) that global climate changes affected local Neandertal habitats. An analysis of Neandertal butchering on Cervus elaphus, Rangifer tarandus, and Capreolus capreolus skeletal material deposited during global warm and cold phases from two French sites - Pech de l'Azé IV and Roc de Marsal - was conducted to assess the impact of climate change on butchering strategies and resource extraction. Results from a statistical analysis of surface modification on all marrow yielding long bones, including the 1st phalanx, demonstrated that specimens excavated from the cold levels at each cave have more cut marks (Wald χ2= 51.33, p= <0.001) and percussion marks (Wald χ2= 4.92, p= 0.02) than specimens from the warm levels after controlling for fragment size. These results support the hypothesis that Neandertals were nutritionally stressed during glacial cycles. The hypothesis that global climates affected local habitats was tested through radiogenic strontium isotopic reconstruction of large herbivore mobility patterns (e.g., Bison, Equus, Cervus and Rangifer), because it is known that in the northern hemisphere, mammals migrate less in warm, well-vegetated environments, but more in cold, open environments. Identifying isotopic variation in mammalian fossils enables mobility patterns to be inferred, providing an indication of whether environments at Pech de l'Azé IV and Roc de Marsal tracked global climates. Results from this study indicate that Neandertal prey species within the Dordogne Valley of France did not undertake long distance round-trip migrations in glacial or interglacial cycles, maintaining the possibility that local habitats did not change in differing climatic cycles. However, because Neandertals were nutritionally stressed the most likely conclusion is that glacial cycles decreased herbivore populations, thus stressing Neandertals.
ContributorsHodgkins, Jamie Melichar (Author) / Marean, Curtis W (Thesis advisor) / Reed, Kaye E (Thesis advisor) / Knudson, Kelly J. (Committee member) / Spencer, Lillian M (Committee member) / Arizona State University (Publisher)
Created2012
Description
This research uses Peircean Semiotics to model the evolution of symbolic behavior in the human lineage and the potential material correlates of this evolutionary process in the archaeological record. The semiotic model states the capacity for symbolic behavior developed in two distinct stages. Emergent capacities are characterized by the sporadic

This research uses Peircean Semiotics to model the evolution of symbolic behavior in the human lineage and the potential material correlates of this evolutionary process in the archaeological record. The semiotic model states the capacity for symbolic behavior developed in two distinct stages. Emergent capacities are characterized by the sporadic use of non-symbolic and symbolic material culture that affects information exchange between individuals. Symbolic exchange will be rare. Mobilized capacities are defined by the constant use of non-symbolic and symbolic objects that affect both interpersonal and group-level information exchange. Symbolic behavior will be obligatory and widespread. The model was tested against the published archaeological record dating from ~200,000 years ago to the Pleistocene/Holocene boundary in three sub-regions of Africa and Eurasia. A number of Exploratory and Confirmatory Data Analysis techniques were used to identify patterning in artifacts through time consistent with model predictions. The results indicate Emergent symboling capacities were expressed as early as ~100,000 years ago in Southern Africa and the Levant. However, capacities do not appear fully Mobilized in these regions until ~17,000 years ago. Emergent symboling is not evident in the European record until ~42,000 years ago, but develops rapidly. The results also indicate both Anatomically Modern Humans and Neanderthals had the capacity for symbolic behavior, but expressed those capacities differently. Moreover, interactions between the two populations did not select for symbolic expression, nor did periodic aggregation within groups. The analysis ultimately situates the capacity for symbolic behavior in increased engagement with materiality and the ability to recognize material objects can be made meaningful– an ability that must have been shared with Anatomically Modern Humans’ and Neanderthals’ most recent common ancestor. Consequently, the results have significant implications for notions of ‘modernity’ and human uniqueness that drive human origins research. This work pioneers deductive approaches to cognitive evolution, and both strengths and weaknesses are discussed. In offering notable results and best practices, it effectively operationalizes the semiotic model as a viable analytical method for human origins research.
ContributorsCulley, Elisabeth Vasser (Author) / Clark, Geoffrey A. (Thesis advisor) / Barton, C. Michael (Thesis advisor) / Marean, Curtis W (Committee member) / Davidson, Iain (Committee member) / Arizona State University (Publisher)
Created2016
154204-Thumbnail Image.png
Description
Despite nearly five decades of archaeological research in the Romanian Carpathian basin and adjacent areas, how human foragers organized their stone artifact technologies under varying environmental conditions remains poorly understood.

Some broad generalizations have been made; most work in the region is concerned primarily with descriptive and definitional issues rather

Despite nearly five decades of archaeological research in the Romanian Carpathian basin and adjacent areas, how human foragers organized their stone artifact technologies under varying environmental conditions remains poorly understood.

Some broad generalizations have been made; most work in the region is concerned primarily with descriptive and definitional issues rather than efforts to explain past human behavior or human-environmental interactions. Modern research directed towards understanding human adaptation to different environments remains in its infancy. Grounded in the powerful conceptual framework of evolutionary ecology and utilizing recent methodological advances, this work has shown that shifts in land-use strategies changes the opportunities for social and biological interaction among Late Pleistocene hominins in western Eurasia, bringing with it a plethora of important consequences for cultural and biological evolution.

I employ, in my Dissertation, theoretical and methodological advances derived from human behavioral ecology (HBE) and lithic technology organization to show how variability in lithic technology can explain differences in technoeconomic choices and land-use strategies of Late Pleistocene foragers in Romanian Carpathians Basin and adjacent areas. Set against the backdrop of paleoenvironmental change, the principal questions I addressed are whether or not technological variation at the beginning of the Upper Paleolithic can account for fundamental changes at its end.

The analysis of the Middle and Upper Paleolithic strata, from six archaeological sites, shows that the lithic industries were different not because of biocultural differences in technological organization, landuse strategies, and organizational flexibility. Instead the evidence suggests that technoeconomic strategies, the intensity of artifact curation and how foragers used the land appear to have been more closely related to changing environmental conditions, task-specific activities, and duration of occupation. This agrees well with the results of studies conducted in other areas and with those predicted from theoretically-derived models based on evolutionary ecology. My results lead to the conclusion that human landuse effectively changes the environment of selection for hominins and their lithic technologies, an important component of the interface between humans and the natural world. Foragers move across the landscape in comparable ways in very different ecological settings, cross-cutting both biological morphotypes and prehistorian-defined analytical units.
ContributorsPopescu, Gabriel Marius (Author) / Barton, Charles Michael (Thesis advisor) / Clark, Geoffrey A. (Thesis advisor) / Marean, Curtis W (Committee member) / Arizona State University (Publisher)
Created2015