Matching Items (3)
151467-Thumbnail Image.png
Description
A semiconductor supply chain modeling and simulation platform using Linear Program (LP) optimization and parallel Discrete Event System Specification (DEVS) process models has been developed in a joint effort by ASU and Intel Corporation. A Knowledge Interchange Broker (KIBDEVS/LP) was developed to broker information synchronously between the DEVS and LP

A semiconductor supply chain modeling and simulation platform using Linear Program (LP) optimization and parallel Discrete Event System Specification (DEVS) process models has been developed in a joint effort by ASU and Intel Corporation. A Knowledge Interchange Broker (KIBDEVS/LP) was developed to broker information synchronously between the DEVS and LP models. Recently a single-echelon heuristic Inventory Strategy Module (ISM) was added to correct for forecast bias in customer demand data using different smoothing techniques. The optimization model could then use information provided by the forecast model to make better decisions for the process model. The composition of ISM with LP and DEVS models resulted in the first realization of what is now called the Optimization Simulation Forecast (OSF) platform. It could handle a single echelon supply chain system consisting of single hubs and single products In this thesis, this single-echelon simulation platform is extended to handle multiple echelons with multiple inventory elements handling multiple products. The main aspect for the multi-echelon OSF platform was to extend the KIBDEVS/LP such that ISM interactions with the LP and DEVS models could also be supported. To achieve this, a new, scalable XML schema for the KIB has been developed. The XML schema has also resulted in strengthening the KIB execution engine design. A sequential scheme controls the executions of the DEVS-Suite simulator, CPLEX optimizer, and ISM engine. To use the ISM for multiple echelons, it is extended to compute forecast customer demands and safety stocks over multiple hubs and products. Basic examples for semiconductor manufacturing spanning single and two echelon supply chain systems have been developed and analyzed. Experiments using perfect data were conducted to show the correctness of the OSF platform design and implementation. Simple, but realistic experiments have also been conducted. They highlight the kinds of supply chain dynamics that can be evaluated using discrete event process simulation, linear programming optimization, and heuristics forecasting models.
ContributorsSmith, James Melkon (Author) / Sarjoughian, Hessam S. (Thesis advisor) / Davulcu, Hasan (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2012
187443-Thumbnail Image.png
Description
Water, energy, and food are essential resources to sustain the development of the society. The Food-Energy-Water Nexus (FEW-Nexus) must account for synergies and trade-offs among these resources. The nexus concept highlights the importance of integrative solutions that secure supplies to meet demands sustainably. The existing frameworks and tools do not

Water, energy, and food are essential resources to sustain the development of the society. The Food-Energy-Water Nexus (FEW-Nexus) must account for synergies and trade-offs among these resources. The nexus concept highlights the importance of integrative solutions that secure supplies to meet demands sustainably. The existing frameworks and tools do not focus on formal model composability, a key capability for creating simulations created from separately developed models. The Knowledge Interchange Broker (KIB) approach is used to model the interactions among models to achieve composition flexibility for the FEW-Nexus.Domain experts generally use the Water Evaluation and Planning (WEAP) and Low Emissions Analysis Platform (LEAP) systems to study water and energy systems, respectively. The food part of FEW systems can be modeled inside the WEAP system. An internal linkage mechanism is available for combining and simulating WEAP and LEAP models. This mechanism is used for the validation and performance evaluation of independent modeling and simulation proposed in this research. The Componentized WEAP and LEAP RESTful frameworks are component-based representations for the legacy and closed-source WEAP and LEAP systems. These modularized systems simplify their use with other simulation frameworks. This research proposes two interaction model frameworks based on the Knowledge Interchange Broker approach. First, an Algorithmic Interaction Model (Algorithmic-IM) was developed to integrate the WEAP and LEAP models. The Algorithmic-IM model can be defined via programming language and has a fixed cyclic execution protocol. However, this approach has tightly interwoven the interaction model with its execution and has limited support for flexibly creating model hierarchies. To overcome these restrictions, the system-theoretic Parallel DEVS formalism is used to develop a DEVS-Based Interaction Model (DEVS-IM). As in the Algorithmic-IM, the DEVS-IM is implemented as a RESTful framework, uses MongoDB for defining structural DEVS models, and supports automatic code generation for the DEVSSuite simulator. The DEVS-IM offers modular, hierarchical structural modeling, reusability, flexibility, and maintainability for integrating disparate systems. The Phoenix Active Management Area (AMA) is used to demonstrate the real-world application of the proposed research. Furthermore, the correctness and performance of the presented frameworks in this research are evaluated using the Phoenix-AMA model.
ContributorsFard, Mostafa D (Author) / Sarjoughian, Hessam S (Thesis advisor) / Barton, Michael (Committee member) / Sen, Arunabha (Committee member) / Zhao, Ming (Committee member) / Arizona State University (Publisher)
Created2023
157996-Thumbnail Image.png
Description
Component simulation models, such as agent-based models, may depend on spatial data associated with geographic locations. Composition of such models can be achieved using a Geographic Knowledge Interchange Broker (GeoKIB) enabled with spatial-temporal data transformation functions, each of which is responsible for a set of interactions between two independent models.

Component simulation models, such as agent-based models, may depend on spatial data associated with geographic locations. Composition of such models can be achieved using a Geographic Knowledge Interchange Broker (GeoKIB) enabled with spatial-temporal data transformation functions, each of which is responsible for a set of interactions between two independent models. The use of autonomous interaction models allows model composition without alteration of the composed component models. An interaction model must handle differences in the spatial resolutions between models, in addition to differences in their temporal input/output data types and resolutions.

A generalized GeoKIB was designed that regulates unidirectional spatially-based interactions between composed models. Different input and output data types are used for the interaction model, depending on whether data transfer should be passive or active. Synchronization of time-tagged input/output values is made possible with the use of dependency on a discrete simulation clock. An algorithm supporting spatial conversion is developed to transform any two-dimensional geographic data map between different region specifications. Maps belonging to the composed models can have different regions, map cell sizes, or boundaries. The GeoKIB can be extended based on the model specifications to be composed and the target application domain.

Two separate, simplistic models were created to demonstrate model composition via the GeoKIB. An interaction model was created for each of the two directions the composed models interact. This exemplar is developed to demonstrate composition and simulation of geographic-based component models.
ContributorsBoyd, William Angelo (Author) / Sarjoughian, Hessam S. (Thesis advisor) / Maciejewski, Ross (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2019